Skip to main content
Log in

Mobile-to-mobile fading channels in amplify-and-forward relay systems under line-of-sight conditions: statistical modeling and analysis

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

This paper deals with the modeling and analysis of narrowband mobile-to-mobile (M2M) fading channels for amplify-and-forward relay links under line-of-sight (LOS) conditions. It is assumed that a LOS component exists in the direct link between the source mobile station (SMS) and the destination mobile station (DMS), as well as in the links via the mobile relay (MR). The proposed channel model is referred to as the multiple-LOS second-order scattering (MLSS) channel model. The MLSS channel model is derived from a second-order scattering process, where the received signal is modeled in the complex baseband as the sum of a single and a double scattered component. Analytical expressions are derived for the mean value, variance, probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades (ADF) of the received envelope of MLSS channels. The PDF of the channel phase is also investigated. It is observed that the LOS components and the relay gain have a significant influence on the statistics of MLSS channels. It is also shown that MLSS channels include various other channel models as special cases, e.g., double Rayleigh channels, double Rice channels, single-LOS double-scattering (SLDS) channels, non-line-of-sight (NLOS) second-order scattering (NLSS) channels, and single-LOS second-order scattering (SLSS) channels. The correctness of all analytical results is confirmed by simulations using a high performance channel simulator. Our novel MLSS channel model is of significant importance for the system level performance evaluation of M2M communication systems in different M2M propagation scenarios. Furthermore, our studies pertaining to the fading behavior of MLSS channels are useful for the design and development of relay-based cooperative wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The PSD \(S_{\mu^{\left(i\right)}\mu^{\left(i\right)}}\left(f\right)\) is an even function. Then, \(\mu^{\left(i\right)}\left(t\right)\) and \(\dot{\mu}^{\left(i\right)}\left(t\right)\) are uncorrelated at the same point in time, because \(r_{\mu^{\left(i\right)}\dot{\mu}^{\left(i\right)}}\left(0\right) =-\frac{d}{d\tau}r_{\mu^{\left(i\right)}\mu^{\left(i\right)}}\left(\tau\right)|_{0} =-j2\pi\int\limits^{\infty}_{-\infty}f\,S_{\mu^{\left(i\right)}\mu^{\left(i\right)}}\left(f\right)\,d\tau=0\). Since, \(\mu^{\left(i\right)}\left(t\right)\) and \(\dot{\mu}^{\left(i\right)}\left(t\right)\) are uncorrelated Gaussian processes, it follows that \(\mu^{\left(i\right)}\left(t\right)\) and \(\dot{\mu}^{\left(i\right)}\left(t\right)\) are also independent [28].

References

  1. Akki AS, Haber F (1986) A statistical model of mobile-to-mobile land communication channel. IEEE Trans Veh Technol 35(1):2–7

    Article  Google Scholar 

  2. Dohler M (2003) Virtual antenna arrays. PhD dissertation, King’s College, London

  3. Barbarossa S, Scutari G (2003) Cooperative diversity through virtual arrays in multihop networks. In: Proc. IEEE international conf. acoustics, speech, signal processing, vol 4. Hong Kong, China, pp 209–212

  4. Sendonaris A, Erkip E, Aazhang B (2003) User cooperation diversity—Part I: system description. IEEE Trans Commun 51(11):1927–1938

    Article  Google Scholar 

  5. Sendonaris A, Erkip E, Aazhang B (2003) User cooperation diversity—Part II: implementation aspects and performance analysis. IEEE Trans Commun 51(11):1939–1948

    Article  Google Scholar 

  6. Laneman JN, Tse DNC, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080

    Article  MathSciNet  Google Scholar 

  7. Andersen JB (2002) Statistical distributions in mobile communications using multiple scattering. In: Proc 27th URSI general assembly. Maastricht, Netherlands

    Google Scholar 

  8. Ercerg V, Fortune SJ, Ling J, Rustako AJ Jr, Valenzuela RA (1997) Comparison of a computer-based propagation prediction tool with experimental data collected in urban microcelluar environment. IEEE J Sel Areas Commun 15(4):677–684

    Article  Google Scholar 

  9. Kovacs IZ, Eggers PCF, Olesen K, Petersen LG (2002) Investigations of outdoor-to-indoor mobile-to-mobile radio communication channels. In: Proc. IEEE 56th veh. technol. conf., VTC’02-Fall, vol 1. Vancouver BC, Canada, pp 430–434

  10. Akki AS (1994) Statistical properties of mobile-to-mobile land communication channels. IEEE Trans Veh Technol 43(4):826–831

    Article  Google Scholar 

  11. Maurer J, Fügen T, Wiesbeck W (2002) Narrow-band measurement and analysis of the inter-vehicle transmission channel at 5.2 GHz. In: Proc. IEEE 55th semiannual veh. technol. conf., VTC’02-Spring, vol 3. Birmingham, Alabama, pp 1274–1278

    Google Scholar 

  12. Pätzold M, Hogstad BO, Youssef N (2008) Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels. IEEE Trans Wirel Commun 7(2):510–520

    Article  Google Scholar 

  13. Zajić AG, Stüber GL (2008) Space-time correlated mobile-to-mobile channels: modelling and simulation. IEEE Trans Veh Technol 57(2), 715–726

    Article  Google Scholar 

  14. Patel CS, Stüber GL, Pratt TG (2006) Statistical properties of amplify and forward relay fading channels. IEEE Trans Veh Technol 55(1):1–9

    Article  Google Scholar 

  15. Salo J, El-Sallabi HM, Vainikainen P (2006) Impact of double-Rayleigh fading on system performance. In: Proc. 1st IEEE int. symp. on wireless pervasive computing, ISWPC 2006. Phuket, Thailand. doi:0-7803-9410-0/10.1109/ISWPC.2006.1613574

  16. Almers P, Tufvesson F, Molisch AF (2006) Keyhole effect in MIMO wireless channels: measurements and theory. IEEE Trans Wirel Commun 5(12):3596–3604

    Article  Google Scholar 

  17. Shin H, Lee JH (2004) Performance analysis of space-time block codes over keyhole Nakagami-m fading channels. IEEE Trans Veh Technol 53(2):351–362

    Article  Google Scholar 

  18. Sagias NC, Tombras GS (2007) On the cascaded Weibull fading channel model. J Franklin Inst 344:1–11 (Elsevier Ltd)

    Article  MATH  MathSciNet  Google Scholar 

  19. Talha B, Pätzold M (2007) On the statistical properties of double Rice channels. In: Proc. 10th international symposium on wireless personal multimedia communications, WPMC 2007. Jaipur, India, pp 517–522

  20. Salo J, Salmi J, Vainikainen P (2005) Distribution of the amplitude of a sum of singly and doubly scattered fading radio signal. In: Proc. IEEE 61st semiannual veh. tech. conf., VTC’05-Spring, vol 1. Stockholm, Sweden, pp 87–91

  21. Salo J, El-Sallabi HM, Vainikainen P (2006) Statistical analysis of the multiple scattering radio channel. IEEE Trans Antennas Propag 54(11):3114–3124

    Article  MathSciNet  Google Scholar 

  22. Talha B, Pätzold M (2007) On the statistical properties of mobile-to-mobile fading channels in cooperative networks under line-of-sight conditions. In: Proc. 10th international symposium on wireless personal multimedia communications, WPMC 2007. Jaipur, India, pp 388–393

  23. Talha B, Pätzold M (2008) A novel amplify-and-forward relay channel model for mobile-to-mobile fading channels under line-of-sight conditions. In: Proc. 19th IEEE int. symp. on personal, indoor and mobile radio communications, PIMRC 2008. Cannes, France, pp 1–6. doi:10.1109/PIMRC.2008.4699733

  24. Nabar RU, Bölcskei H, Kneubühler FW (2004) Fading relay channels: performance limits and space-time signal design. IEEE J Sel Areas Commun 22(6):1099–1109

    Article  Google Scholar 

  25. Azarian K, Gamal HE, Schniter P (2005) On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Trans Inf Theory 51(12):4152–4172

    Article  Google Scholar 

  26. Nabar RU, Bölcskei H (2003) Space-time signal design for fading relay channels In: Proc. IEEE globecom, vol 4. San Francisco, pp 1952–1956

  27. Jakes WC (ed) (1994) Microwave mobile communications. IEEE, Piscataway

    Google Scholar 

  28. Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes, 4th edn. McGraw-Hill, New York

    Google Scholar 

  29. Simon MK (2002) Probability distributions involving gaussian random variables: a handbook for engineers and scientists. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  30. Pätzold M (2002) Mobile fading channels. Wiley, Chichester

    Book  Google Scholar 

  31. Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series, and products, 6th edn. Academic, New York

    MATH  Google Scholar 

  32. Rice SO (1945) Mathematical analysis of random noise. Bell Syst Tech J 24:46–156

    MATH  MathSciNet  Google Scholar 

  33. Proakis J, Salehi M (2008) Digital communications, 5th edn. McGraw-Hill, New York

    Google Scholar 

  34. Tsie KY, Fines P, Aghvami AH (1992) Concatenated code and interleaver design for data transmission over fading channels. In: Proc. 9th international conference on digital satellite communications, ICDSC-9. Copenhagen, Denmark, pp 253–259

  35. Biglieri E, Divsalar D, McLane PJ, Simon MK (1991) Introduction to trellis-coded modulation with applications. Macmillan, New York

  36. Morris JM (1992) Burst error statistics of simulated Viterbi decoded BPSK on fading and scintillating channels. IEEE Trans Commun 40(1):34–41

    Article  Google Scholar 

  37. Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23:282–332

    MATH  MathSciNet  Google Scholar 

  38. Patel CS, Stüber GL, Pratt TG (2005) Comparative analysis of statistical models for the simulation of Rayleigh faded cellular channels. IEEE Trans Commun 53(6):1017–1026

    Article  Google Scholar 

  39. Höher P (1992) A statistical discrete-time model for the WSSUS multipath channel. IEEE Trans Veh Technol 41(4):461–468

    Article  Google Scholar 

  40. Yip K-W, Ng T-S (1995) Efficient simulation of digital transmission over WSSUS channels. IEEE Trans Commun 43(12):2907–2913

    Article  Google Scholar 

  41. Han J-K, Yook J-G, Park H-K (2002) A deterministic channel simulation model for spatially correlated Rayleigh fading. IEEE Commun Lett 6(2):58–60

    Article  Google Scholar 

  42. Pätzold M, Youssef N (2001) Modelling and simulation of direction-selective and frequency-selective mobile radio channels. Int J Electron Commun AEÜ-55(6):433–442

    Article  Google Scholar 

  43. Pätzold M, Hogstad BO (2004) A space-time channel simulator for MIMO channels based on the geometrical one-ring scattering model. Wirel Commun Mob Comput 4(7):727–737 (Special Issue on Multiple-Input Multiple-Output (MIMO) Communications)

    Article  Google Scholar 

  44. Pätzold M, Killat U, Laue F (1996) A deterministic digital simulation model for Suzuki processes with application to a shadowed Rayleigh land mobile radio channel. IEEE Trans Veh Technol 45(2):318–331

    Article  Google Scholar 

  45. Pätzold M, Killat U, Laue F, Li Y (1998) On the statistical properties of deterministic simulation models for mobile fading channels. IEEE Trans Veh Technol 47(1):254–269

    Article  Google Scholar 

  46. Zheng YR, Xiao C (2002) Improved models for the generation of multiple uncorrelated Rayleigh fading waveforms IEEE Commun Lett 6(6):256–258

    Article  Google Scholar 

  47. Pätzold M, Hogstad BO, Kim D (2007) A new design concept for high-performance fading channel simulators using set partitioning. Wirel Pers Commun 40(2):267–279

    Article  Google Scholar 

  48. Pätzold M, Hogstad BO (2006) Two new methods for the generation of multiple uncorrelated Rayleigh fading waveforms. In: Proc. IEEE 63rd semiannual veh. tech. conf., VTC’06-Spring, vol 6. Melbourne, Australia, pp 2782–2786

  49. Watson GN (1995) A treatise on the theory of Bessel functions, 2nd edn. Cambridge University Press, Bentley House, London

    MATH  Google Scholar 

  50. Oppenheim AV, Willsky AS, Hamid S (1996) Signals & systems, 2nd edn. Prentice-Hall, Inc., New Jersey

    Google Scholar 

  51. Papoulis A (1977) Signal analysis, 3rd edn. McGraw-Hill, Auckland

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batool Talha.

Additional information

The material in this paper was presented in part at the 19th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2008, Cannes, France, September 2008.

The material in this paper has been published in part in the proceedings of the 51st IEEE Globecom 2008, New Orleans, USA, December 2008.

Appendices

Appendix A: Proof of (30)

For ρ 1 = 0, \(A_{\mbox{\tiny MR}}=1\), and \(\sigma^2_1\rightarrow0\), (15) reduces to

$$\label{eqnpdfEnvelope2RiceDerivationA}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho_1=0\\ A_{\mbox{\tiny MR}}=1\\ \sigma^2_1\rightarrow0 \end{subarray}}\right.&=&\frac{x} {2\pi\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}\int\limits^{\infty}_{0} \int\limits^{\pi}_{-\pi}d\psi d\nu d\omega\\ &&\times \frac{\omega}{\nu} e^{-\frac{\left(\omega/\nu\right)^2+\rho_{2}^2}{2\sigma_{2}^2}} e^{-\frac{\nu^2+\rho_{\tiny A_{\mbox{\tiny MR}}}^2}{2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2}} I_{0}\left(\sqrt{g_{5} \left(\omega,\nu,\psi\right)}\right) \\ &&\times \underbrace{\lim\limits_{\sigma^2_1\rightarrow0} \frac{e^{-\frac{x^2+\omega^2}{2\sigma_{1}^2}}}{\sigma_{1}^2}I_{0}\left( \frac{x\omega}{\sigma_{1}^2}\right)}_{X_1} \end{array} $$
(54)

for x ≥ 0. Furthermore, using the asymptotic expansions of the zeroth-order modified Bessel function of the first kind \(I_{0}\left(\cdot\right)\) [49, Sec. (7.23), Eq. (2)], allows us to write X 1 as

$$\label{eqnsolution4}\begin{array}{lll} X_1&=&\lim\limits_{\sigma^2_1\rightarrow0} \frac{e^{-\frac{x^2+\omega^2}{2\sigma_{1}^2}}}{\sigma_{1}^2} \frac{e^{\frac{x\omega}{\sigma^2_1}}\sigma_1}{\sqrt{2\pi x\omega}} =\frac{1}{\sqrt{x\omega}} \lim\limits_{\sigma^2_1\rightarrow0}\frac{e^{-\frac{x^2+\omega^2-2x\omega}{2\sigma_{1}^2}}}{\sqrt{2\pi}\sigma_1}\\ &=&\frac{1}{\sqrt{x\omega}}\delta\left(\omega-x\right)\:. \end{array} $$
(55)

Substituting (55) in (54) gives

$$\label{eqnpdfEnvelope2RiceDerivationB}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho_1=0\\ A_{\mbox{\tiny MR}}=1\\ \sigma^2_1\rightarrow0 \end{subarray}}\right.&=&\frac{x}{2\pi\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}d\nu\,\frac{1}{\nu}e^{-\frac{\nu^2+\rho_{\tiny A_{\mbox{\tiny MR}}}^2}{2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2}} \int\limits^{\pi}_{-\pi}d\psi \int\limits^{\infty}_{0}d\omega\\ &&\times \sqrt{\frac{\omega}{x}} e^{-\frac{\left(\omega/\nu\right)^2+\rho_{2}^2}{2\sigma_{2}^2}} I_{0}\left(\sqrt{g_{5} \left(\omega,\nu,\psi\right)}\right) \delta\left(\omega-x\right)\\ \end{array} $$
(56)

for x ≥ 0. Applying the sifting property of the delta function [50] on (56) gives

$$\label{eqnpdfEnvelope2RiceDerivationC}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho_1=0\\ A_{\mbox{\tiny MR}}=1\\ \sigma^2_1\rightarrow0 \end{subarray}}\right.&=&\frac{x} {2\pi\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}d\nu\,\frac{1}{\nu} e^{-\frac{\left(x/\nu\right)^2+\rho_{2}^2}{2\sigma_{2}^2}}e^{-\frac{\nu^2+\rho_{\tiny A_{\mbox{\tiny MR}}}^2}{2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2}} \\&&\times \underbrace{\int\limits^{\pi}_{-\pi} I_{0}\left(\sqrt{g_{5} \left(x,\nu,\psi\right)}\right)d\psi}_{X_2},\,x\geq0. \end{array} $$
(57)

Numerical investigations show that it is possible to approximate X 2 in (57) as

$$ X_2=\left(2\pi\right)I_0\left(\frac{x\rho_2}{\nu\sigma^2_2}\right)I_0\left(\frac{\nu\rho_{\tiny A_{\mbox{\tiny MR}}}}{\sigma^2_{\tiny A_{\mbox{\tiny MR}}}}\right). \label{eqn:solutionX5} $$
(58)

Thus, replacing (58) in (57) gives (30).

Appendix B: Proof of (35)

Substituting ρ 1 = ρ 2 = ρ 3 = 0 and \(A_{\mbox{\tiny MR}}=1\) in (15), we can express \(p_{\Xi}\left(x\right)\left|_{\begin{subarray}{l} \rho1,\rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1 \end{subarray}}\right.\) as follows

$$\label{eqn:pdfEnvelope2Rayleigh_DerivationA}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho1,\rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1 \end{subarray}}\right.&=& \frac{x\;e^{-\frac{x^2}{2\sigma_{1}^2}}} {2\pi\sigma_{1}^2\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}d\omega\,\omega\,e^{-\frac{\omega^2}{2\sigma_{1}^2}}I_{0}\left(\frac{x\omega}{\sigma_{1}^2}\right) \\ &&\times \underbrace{\int\limits^{\infty}_{0}\frac{1}{\nu}e^{-\frac{\left(\omega/\nu\right)^2}{2\sigma_{2}^2}} e^{-\frac{\nu^2}{2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2}}\,dv}_{X_3=K_0\left(\frac{w}{\sigma_2\sigma_{\tiny A_{\mbox{\tiny MR}}}}\right)}\underbrace{\int\limits^{\pi}_{-\pi}d\psi}_{X_4=2\pi},\,x\geq0\\ \end{array} $$
(59)

where X 3 is obtained by using [31, Eq. (3.478.4)]. Taking the limit \(\sigma^2_1\rightarrow0\), (59) can be written as

$$\label{eqn:pdfEnvelope2Rayleigh_DerivationB}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho1,\rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1\\ \sigma^2_1\rightarrow0 \end{subarray}}\right.&=& \frac{x} {\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}d\omega\,\omega K_{0}\left(\frac{\omega}{\sigma_2\sigma_{\tiny A_{\mbox{\tiny MR}}}}\right)\\ &&\times \lim\limits_{\sigma^2_1\rightarrow0}\frac{e^{-\frac{x^2+\omega^2}{2\sigma_{1}^2}}}{\sigma_{1}^2} I_{0}\left(\frac{\omega}{\sigma_{1}^2}x\right),\;x\geq0\,. \end{array} $$
(60)

Using the asymptotic expansions of the zeroth-order modified Bessel function of the first kind \(I_{0}\left(\cdot\right)\) [49, Sec. (7.23), Eq. (2)], (60) can be expressed as

$$\label{eqn:pdfEnvelope2Rayleigh_DerivationC}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho1,\rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1\\ \sigma^2_1\rightarrow0 \end{subarray}}\right.&=& \frac{x} {\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}d\omega\,\omega K_{0}\left(\frac{\omega}{\sigma_2\sigma_{\tiny A_{\mbox{\tiny MR}}}}\right)\\ &&\times \lim\limits_{\sigma^2_1\rightarrow0}\frac{e^{-\frac{x^2+\omega^2}{2\sigma_{1}^2}}}{\sigma_{1}^2} \frac{e^{\frac{x\omega}{\sigma_{1}^2}}\sigma_1}{\sqrt{2\pi x\:\omega}}\\ &=& \frac{x} {\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}d\omega\,\sqrt{\frac{\omega}{x}} K_{0}\left(\frac{\omega}{\sigma_2\sigma_{\tiny A_{\mbox{\tiny MR}}}}\right)\\ &&\times \underbrace{\lim\limits_{\sigma^2_1\rightarrow0}\frac{e^{-\frac{x^2+\omega^2-2x\omega}{2\sigma_{1}^2}}} {\sqrt{2\pi}\sigma_1}}_{X_5},\;x\geq0 \end{array} $$
(61)

where \(X_5=\delta\left(\omega-x\right)\) by definition of the delta function [51]. Thus, (61) can be written as

$$\label{eqn:pdfEnvelope2Rayleigh_DerivationD}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho1,\rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1\\ \sigma^2_1\rightarrow0 \end{subarray}}\right.&=& \frac{x} {\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}d\omega \sqrt{\frac{\omega}{x}} K_{0}\left(\frac{\omega}{\sigma_2\sigma_{\tiny A_{\mbox{\tiny MR}}}}\right) \\ &&\times \delta\left(\omega-x\right),x\geq0\,. \end{array} $$
(62)

Applying the sifting property of the delta function [50] on (62), results in (35).

Appendix C: Proof of (40)

Substituting ρ 2 = ρ 3 = 0 as well as \(A_{\mbox{\tiny MR}}=1\) and integrating (12) over θ from − π to π allows us to write \(p_{\Xi}\left(x\right)\left|_{\begin{subarray}{l} \rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1 \end{subarray}}\right.\) as

$$\label{eqn:pdfSLDS_DerivationAA}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1 \end{subarray}}\right.&=& \frac{x}{\left(2\pi\right)^2\sigma^2_2\sigma^2_{\tiny A_{\mbox{\tiny MR}}}} \int\limits^{\infty}_{0}\int\limits^{\pi}_{-\pi}d\theta\,d\omega\\ &&\times \ \underbrace{\int\limits^{\infty}_{0}d\nu\frac{\omega}{\nu} e^{-\frac{\left(\omega/\nu\right)^2}{2\sigma^2_2}}e^{-\frac{\nu^2}{2\sigma^2_{\tiny A_{\mbox{\tiny MR}}}}}} _{X_6=K_0\left(\frac{\omega}{\sigma_2\sigma_{\tiny A_{\mbox{\tiny MR}}}}\right)}e^{-\frac{g_{11}\left(x,\theta\right)}{2\sigma^2_1}}\\ &&\times \ \underbrace{\int\limits^{\pi}_{-\pi} e^{-\frac{\omega\left\{\rho_1\cos\left(\theta\right)+x\cos\left(\theta-\psi\right)\right\}}{\sigma^2_1}}d\psi} _{X_7=(2\pi)I_0\left(\frac{\omega}{\sigma^2_1}\sqrt{g_{11}\left(x,\theta\right)}\right)} \end{array} $$
(63)

for x ≥ 0. In (63), X 6 is evaluated using [31, Eq. (3.478.4)], whereas X 7 with the help of [31, Eq. (3.338.4)]. Taking the limit \(\sigma^2_1\rightarrow0\) in (63), allows us to write

$$\label{eqn:pdfSLDS_DerivationA}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1\\ \sigma^2_1\rightarrow0 \end{subarray}}\right.\!&=&\!\frac{x} {2\pi\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}\int\limits^{\infty}_{0} \int\limits^{\pi}_{-\pi}d\theta d\nu d\omega\frac{\omega}{\nu} e^{-\frac{\left(\omega/\nu\right)^2}{2\sigma_{2}^2}} e^{-\frac{\nu^2}{2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2}}\\ &&\times \ \lim\limits_{\sigma^2_1\rightarrow0}\frac{e^{-\frac{\omega^2}{2\sigma_{1}^2}}e^{-\frac{g_{11}\left(x,\theta\right)} {2\sigma_{1}^2}}}{\sigma_{1}^2} I_{0}\left( \frac{\omega}{\sigma_{1}^2}\sqrt{g_{11} \left(x,\theta\right)}\right)\\ \end{array} $$
(64)

for x ≥ 0. Using the asymptotic expansions of the zeroth-order modified Bessel function of the first kind \(I_{0}\left(\cdot\right)\) [49, Sec. (7.23), Eq. (2)], (64) can be expressed as

$$\label{eqn:pdfSLDS_DerivationB}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1\\ \sigma^2_1\rightarrow0 \end{subarray}}\right.\!&=&\!\frac{x} {2\pi\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}\int\limits^{\infty}_{0} \int\limits^{\pi}_{-\pi}d\theta d\nu d\omega\frac{\omega}{\nu} e^{-\frac{\left(\omega/\nu\right)^2}{2\sigma_{2}^2}} e^{-\frac{\nu^2}{2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2}}\\ &&\times \ \lim\limits_{\sigma^2_1\rightarrow0}\frac{e^{-\frac{\omega^2}{2\sigma_{1}^2}}e^{-\frac{g_{11}\left(x,\theta\right)} {2\sigma_{1}^2}}}{\sigma_{1}^2} \frac{e^{\frac{\omega}{\sigma_{1}^2}\sqrt{g_{11} \left(x,\theta\right)}}\sigma_1}{\sqrt{2\pi \omega}g_{11}\left(x,\theta\right)}\\ &=& \frac{x} {2\pi\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}\int\limits^{\infty}_{0} \int\limits^{\pi}_{-\pi}d\theta d\nu d\omega \\ &&\times \frac{\sqrt{\omega}}{\nu\,g_{11} \left(x,\theta\right)} e^{-\frac{\left(\omega/\nu\right)^2}{2\sigma_{2}^2}} e^{-\frac{\nu^2}{2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2}}\\ &&\times \underbrace{\lim\limits_{\sigma^2_1\rightarrow0} \frac{e^{-\frac{\omega^2+\left(\sqrt{g_{11}\left(x,\theta\right)}\right)^2 -2\omega\sqrt{g_{11}\left(x,\theta\right)}} {2\sigma_{1}^2}}}{\sqrt{2\pi}\sigma_{1}}}_{X_8} \end{array} $$
(65)

for x ≥ 0. In (65), \(X_8=\delta\left(\omega-g_{11}\left(x,\theta\right)\right)\) by definition of the delta function [51]. Thus, (65) can be written as

$$\label{eqn:pdfSLDS_DerivationC}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1\\ \sigma^2_1\rightarrow0 \end{subarray}}\right.&=&\frac{x} {2\pi\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}\int\limits^{\infty}_{0} \int\limits^{\pi}_{-\pi}d\theta d\nu d\omega\frac{\sqrt{\omega}}{\nu\,g_{11} \left(x,\theta\right)}\\ &&\times \ e^{-\frac{\left(\omega/\nu\right)^2}{2\sigma_{2}^2}} e^{-\frac{\nu^2}{2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2}}\delta\left(\omega-\sqrt{g_{11} \left(x,\theta\right)}\right) \\ \end{array} $$
(66)

for x ≥ 0. Applying the sifting property of the delta function [50] on (67) results in

$$\label{eqn:pdfSLDS_DerivationC}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1\\ \sigma^2_1\rightarrow0 \end{subarray}}\right.&=& \frac{x} {2\pi\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \\ && \times \int\limits^{\pi}_{-\pi}d\theta \underbrace{\int\limits^{\infty}_{0} \frac{e^{-\frac{g^2_{11} \left(x,\theta\right)}{2\sigma_{2}^2v^2}}e^{-\frac{\nu^2}{2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2}}}{\nu}\,d\nu}_{X_9=K_0\left(\frac{\sqrt{g_{11}\left(x,\theta\right)}}{\sigma_2\sigma_{\tiny A_{\mbox{\tiny MR}}}}\right)},\,x\geq0\:.\\ \end{array} $$
(67)

where X 9 is evaluated using [31, Eq. (3.478.4)]. Thus, integrating (67) over θ from − π to π results in the final expression given in (40).

Appendix D: Proof of (46)

Substituting ρ 2 = ρ 3 = 0 as well as \(A_{\mbox{\tiny MR}}=1\) and integrating (12) over θ from − π to π allows us to write \(p_{\Xi}\left(x\right)\left|_{\begin{subarray}{l} \rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1 \end{subarray}}\right.\) as

$$\label{eqn:pdfSLSS_DerivationA}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1 \end{subarray}}\right.&=& \frac{x}{\left(2\pi\right)^2\sigma^2_2\sigma^2_{\tiny A_{\mbox{\tiny MR}}}} \int\limits^{\infty}_{0}\int\limits^{\pi}_{-\pi}d\theta\,d\omega\\ &&\times \ \underbrace{\int\limits^{\infty}_{0}d\nu\frac{\omega}{\nu} e^{-\frac{\left(\omega/\nu\right)^2}{2\sigma^2_2}}e^{-\frac{\nu^2}{2\sigma^2_{\tiny A_{\mbox{\tiny MR}}}}}} _{X_{10}=K_0\left(\frac{\omega}{\sigma_2\sigma_{\tiny A_{\mbox{\tiny MR}}}}\right)}e^{-\frac{g_{11}\left(x,\theta\right)}{2\sigma^2_1}} \\ &&\times \ \underbrace{\int\limits^{\pi}_{-\pi} e^{-\frac{\omega\left\{\rho_1\cos\left(\theta\right)+x\cos\left(\theta-\psi\right)\right\}}{\sigma^2_1}}d\psi} _{X_{11}=(2\pi)I_0\left(\frac{\omega}{\sigma^2_1}\sqrt{g_{11}\left(x,\theta\right)}\right)} \end{array} $$
(68)

for x ≥ 0. In (68), X 10 and X 11 are evaluated using [31, Eq. (3.478.4)] and [31, Eq. (3.338.4)], respectively. Thus, replacing X 10 and X 11 in (68) results in (46).

Appendix E: Proof of (51)

Substituting ρ 1 = ρ 2 = ρ 3 = 0 and \(A_{\mbox{\tiny MR}}=1\) in (15), we can express \(p_{\Xi}\left(x\right)\left|_{\begin{subarray}{l} \rho1,\rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1 \end{subarray}}\right.\) as follows

$$\label{eqn:pdfNLSS_DerivationA}\begin{array}{lll} p_{\Xi}\left(x\right)\left|_{ \begin{subarray}{l} \rho1,\rho_2,\rho_3=0\\ A_{\mbox{\tiny MR}}=1 \end{subarray}}\right.&=& \frac{x\;e^{-\frac{x^2}{2\sigma_{1}^2}}} {2\pi\sigma_{1}^2\sigma_{2}^2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2} \int\limits^{\infty}_{0}d\omega\,\omega\,e^{-\frac{\omega^2}{2\sigma_{1}^2}} I_{0}\left(\frac{x\omega}{\sigma_{1}^2}\right)\\ &&\times \ \underbrace{\int\limits^{\infty}_{0}\frac{1}{\nu}e^{-\frac{\left(\omega/\nu\right)^2}{2\sigma_{2}^2}} e^{-\frac{\nu^2}{2\sigma_{\tiny A_{\mbox{\tiny MR}}}^2}}\,dv}_{X_{12}=K_0\left(\frac{w}{\sigma_2\sigma_{\tiny A_{\mbox{\tiny MR}}}}\right)}\underbrace{\int\limits^{\pi}_{-\pi}d\psi}_{X_{13}=2\pi},\,x\geq0 \\ \end{array} $$
(69)

where X 12 is evaluated using [31, Eq. (3.478.4)]. Thus, replacing X 12 and X 13 in (69) gives (51).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talha, B., Pätzold, M. Mobile-to-mobile fading channels in amplify-and-forward relay systems under line-of-sight conditions: statistical modeling and analysis. Ann. Telecommun. 65, 391–410 (2010). https://doi.org/10.1007/s12243-010-0169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-010-0169-z

Keywords

Navigation