Skip to main content
Log in

Xanthine Oxido-Reductase, Free Radicals and Cardiovascular Disease. A Critical Review

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Free radical mediated pathologies occupy a special place in medical semiology and in mechanistic interpretation of diseases. Free radicals, or better reactive oxygen species (ROS) or reactive nitrogen species (RNS) play also an important role in cell signaling. This is the basis of the ambivalent (Jekyll – Hyde) situation of ROS in biology and pathology. Aging itself is attributed by a popular theory to free radicals. A number of ROS – scavenging substances and procedures were described without however reaching credibility for their therapeutic value. An interesting exception is the xanthine oxido - reductase produced ROS and their role in cardiovascular disease. Allopurinol inhibition of xanthine oxido – reductase was shown to be efficient in some cases of cardiovascular diseases. Another important aspect of xanthine oxido – reductase produced ROS is their antibacterial capacity considered to be of importance with newborns fed on milk rich in this enzyme as well as at the gastrointestinal barrier. This ambivalent role of xanthine oxido – reductase justifies this review on the basic enzymatic mechanisms involved, derived ROS production, their role in the above mentioned biological processes and especially the interest of the inhibition of this enzyme as a preventive or curative measure in some cardiovascular pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

XOR:

Xanthine oxido reductase

XO:

Xanthine oxidase

XD:

Xanthine dehydrogenase

AO:

Aldehyde oxidase

MFE:

Molybdo flavo enzymes

UA:

Uric acid

NOS:

Nitric oxide synthetase

CVD:

Cardio vascular disease

IR:

Ischemia reperfusion

MI:

Myocardial infarct

HF:

Heart failure

BP:

Blood pressure

EPR:

Electron paramagnetic resonance

NAD:

Nicotine adenine dinucleotide

Kb:

1000 base-unit in DNA

SOD:

Superoxide dismutase

References

  1. Robert L, Labat-Robert J, Robert AM (2010) Vieillissement cellulaire, télomères et maladies liées à l’âge. Médecine & Longévité 2:151–161. doi:10.1016/j.mlong.2010.07.005

    Article  Google Scholar 

  2. Harman D (1955) Aging — a theory based on free radical and information theory U.C.R.L. Publ., 3078, Univ. of Calif.

  3. Comfort A (1979) The biology of senescence, 3rd edn. Churchill Livingstone, Edinburgh & London, 1979

    Google Scholar 

  4. Emerit I, Eds BC (1992) Free radicals and aging. Birkhäuser Verlag, Basel, 1992

    Book  Google Scholar 

  5. Edeas M (2009) Anti-oxydants, controverses et perspectives: comment expliquer l’échec des etudes cliniques utilisant des anti-oxydants. J Soc Biol 203:271–280

    Article  CAS  PubMed  Google Scholar 

  6. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  Google Scholar 

  7. Martin HM, Hancock JT, Salisbury V, Harrison R (2004) Mini-review. Role of xanthine oxydoreductase as an antimicrobial agent. Infect Immun 72:4933–4939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251

    Article  CAS  PubMed  Google Scholar 

  9. Garattini E, Mendel R, Romao MJ, Wright R, Terao M (2003) Review article. Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem J 372:15–32

    Article  CAS  PubMed  Google Scholar 

  10. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237

    CAS  PubMed  Google Scholar 

  11. Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during inflammation. New Engl J Med 367:2322–2333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Patton S, Keenan TW (1975) The milk fat globule membrane. Biochim Biophys Acta 415:273–309

    Article  CAS  PubMed  Google Scholar 

  13. Dowben RM, Brunner JR, Philpott DE (1967) Studies on milk fat globule membranes. Biochim Biophys Acta 135:1–10

    Article  CAS  PubMed  Google Scholar 

  14. Polonovski M, Robert M, Robert L (1950) Cinétique de la révélation de la xanthinedéhydrase du lait de vache. Bull Soc Chim Biol 32:862–867

    CAS  PubMed  Google Scholar 

  15. Polonovski M, Baudu L, Robert M, Robert L (1950) Données nouvelles sur la révélation de la xanthine-déhydrase du lait par les agents chimiques. Bull Soc Chim Biol 32:855–861

    CAS  PubMed  Google Scholar 

  16. Polonovski M, Robert L, Robert M (1950) Une nouvelle méthode d’extraction et de purification de la xanthine déhydrase du lait. Bull Soc Chim Biol 32:868–871

    CAS  PubMed  Google Scholar 

  17. Robert L, Basset J (1953) Action des hautes pressions sur la xanthinedéhydrase du lait. Bull Soc Chim Biol 35:1375–1380

    CAS  PubMed  Google Scholar 

  18. Robert L, Nolla N (1953) Action des ultrasons sur la xanthinedéhydrase du lait. Bull Soc Chim Biol 35:1363–1373

    CAS  PubMed  Google Scholar 

  19. Robert L, Polonovski M (1955) Activation and inactivation of milk xanthineoxydase by physicochemical means. In: Discussions of the Faraday Society, N° 20, The Physical Chemistry of Enzymes The Aberdeen University Press Ltd; 6 Upper Kirkgate, Aberdeen, pp 54–65

  20. Avis PG, Berger F, Bray RC, Shooter KV (1954) A crystalline material with xanthine oxidase activity. Nature 173:1230–1233

    Article  CAS  PubMed  Google Scholar 

  21. Avis PG, Bergel F, Bray RC (1955) Cellular constituents. The chemistry of xanthine oxidase. Pat I. The preparation of a crystalline xanthine oxidase from cow’s milk. J Chem Soc April 1100–1105

  22. Avis PG, Bergel F, Bray RC, James DWF, Shooter KV (1956) Cellular constituents. The chemistry of xanthine oxidase. Part II. The homogeneity of crystalline metalloflavoprotein fractions. J Chem Soc 252:1212–1219

    Article  Google Scholar 

  23. Avis PG, Bergel F, Bray RC (1956) Cellular constituents. The chemistry of xanthine oxidase. Part III. Estimations of the co-factors and the catalytic activities of enzyme fractions from cow’s milk. J Chem Soc 253:1219–1226

    Article  Google Scholar 

  24. Bergel F, Bray RC (1959) The chemistry of xanthine oxidase. 4. The problems of enzyme inactivation and stabilisation. Biochem J 73:182–192

    CAS  PubMed  Google Scholar 

  25. Bray RC, Chisholm AJ, Hart LI, Meriwether LS, Watts DC (1966) Studies on the composition and mechanism of action of milk xanthine oxidase. In: Slater EC (ed) Flavins and flavoproteins. Elsevier Publishing Company, Amsterdam, pp 117–132

    Google Scholar 

  26. Haddow A, de Lamirande G, Bergel F, Bray RC, Gilbert DA (1958) Anti-tumour and biochemical effects of purified bovine xanthine oxidase in C3H and C mice. Nature 182:1144–1146

    Article  CAS  PubMed  Google Scholar 

  27. Mackler B, Mahler HR, Green DE (1954) Studies on metalloflavoproteins. I. Xanthine oxydase. A molybdoflavoprotein. J Biol Chem 210:149–164

    CAS  PubMed  Google Scholar 

  28. Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555:589–606

    Article  CAS  PubMed  Google Scholar 

  29. Granger DN, Rutili G, McCord J (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology 81:22–29

    CAS  PubMed  Google Scholar 

  30. Carden DI, Granger DN (2000) Pathology of ischemia-reperfusion injury. J Pathol 190:255–266

    Article  CAS  PubMed  Google Scholar 

  31. Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797

    Article  CAS  PubMed  Google Scholar 

  32. Granger DN, Rutili G, McCord JM (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology 81:22–29

    CAS  PubMed  Google Scholar 

  33. Abadeh S, Killacky J, Benboubetra M, Harrison R (1992) Purification and partial characterization of xanthine oxidase from human milk. Biochim Biophys Acta 1117:25–32

    Article  CAS  PubMed  Google Scholar 

  34. Vorbach C, Scriven A, Capecchi MR (2002) The housekeeper gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev 16:3223–3235

    Article  CAS  PubMed  Google Scholar 

  35. Simmonds HA (1994) Purine and pyrimidine disorders. In: Holton JS (ed) The Inherited metabolic diseases, 2nd edn. Churchill Livingstone, New York, pp 297–307

    Google Scholar 

  36. Delbarre F, Cartier P, Auscher C, De Géry A, Hamet M (1970) Gouttes enzymopathiques. Dyspurinies par déficit en Hypoxanthine-Guanine-Phosphoribosyl-Transférase. Fréquence et caractères cliniques de l’anenzymose. Presse Med 78:729–734

    CAS  PubMed  Google Scholar 

  37. Ea H-K, Bardin T, Jinnah HA, Aral B, Lioté F, Ceballos - Picot I (2009) Severe Gouty Arthritis and mild neurologic symptoms due to F199C, a newly identified variant of the hypoxanthine guanine phosphoribosyltransferase. Arthritis Rheum 60:2201–2220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lewers JC, Ceballos-Picot I, Shirley TL, Mockel L, Egami K, Jinnah HA (2008) Consequences of impaired purine recycling in dopaminergic neurons. Neuroscience 152:761–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bollée G, Dollinger C, Boutaud L, Guillemot D, Bensman A, Harambat J, Deteix P, Daudon M, Knebelmann B, Ceballos-Picot I (2010) Phenotype and genotype characterization of adenine phosphoribosyltransfetrase deficiency. J Am Soc Nephrol 4:679–688

    Article  Google Scholar 

  40. Jinnah HA, Ceballos-Picot I, Torres RJ, Visser JE, Schretlen DJ, Verdu A, Larovere LE, Chen S-J, Cossu A et al (2010) Attenuated variants of Lesch-Nyhan disease. Brain 133:671–689

    Article  CAS  PubMed  Google Scholar 

  41. Li H, Samouilov A, Liu X, Zweier JL (2003) Characterization of the magnitude and kinetics of xanthine oxidase – catalysed nitrate reduction: evaluation of its role in nitrite and nitric oxide generation in anoxic tissues. Biochemistry 42:1150–1159

    Article  CAS  PubMed  Google Scholar 

  42. Kayyali US, Donaldson C, Huang H, Abdelnour R, Hassoun PM (2001) Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia. J Biol Chem 276:14359–14365

    Article  CAS  PubMed  Google Scholar 

  43. Adachi T, Fukushima T, Usami Y, Hirano K (1993) Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial cell surface. Biochem J 289:523–527

    CAS  PubMed  Google Scholar 

  44. Brown JM, Terrada LS, Grosso MA, Whitmann GJ, Velasco SE, Patt A, Harken AH, Repine JE (1988) Xanthine oxidase produces hydrogen peroxide which contributes to reperfusion injury of ischemic, isolated, perfused rat hearts. J Clin Invest 81:1297–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Wang W, Sawicki G, Schulz R (2002) Peroxinitrite – induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 53:165–174

    Article  CAS  PubMed  Google Scholar 

  46. Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JRB, Sawicki G, Schulz R (2002) Intracellular action of matrix metalloproteinase - 2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549

    Article  CAS  PubMed  Google Scholar 

  47. Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes dual mechanism regulation by nitric oxide and S-nitrosothiols. J General Physiol 108:277–293

    Article  CAS  Google Scholar 

  48. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Burns CM, Wortmann RL (2012) Latest evidence on gout management: what the clinician needs to know. Ther Adv Chronic Dis 3(6):271–286

    Article  PubMed Central  PubMed  Google Scholar 

  50. Truglio JJ, Theis K, Leimkühler S, Rappa R, Rajagopalan KV, Kisker C (2002) Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure 10:115–125

    Article  CAS  PubMed  Google Scholar 

  51. Sanders S, Eisenthal RS, Harrison R (1997) NADH oxidase activity of human xanthine oxidoreductase –generation of superoxide anion. Eur J Biochem 245:541–548

    Article  CAS  PubMed  Google Scholar 

  52. Brown JM, Terada LS, Grosso MA, Whitmann GJ, Velasco SE, Patt A, Harken AH, Repine JE (1988) Xanthine oxidase produces hydrogen peroxide which contributes to reperfusion injury of ischemic, isolated perfused rat hearts. J Clin Invest 81:1297–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Grisham MB, Hernandez LA, Granger DN (1986) Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol 251:G567–G574

    CAS  PubMed  Google Scholar 

  54. Gimpel JA, Lahpor JR, van der Molen A, Damen J, Hitchcock JF (1995) Reduction of reperfusion injury of human myocardium by allopurinol: a clinical study. Free Radic Biol Med 19:251–255

    Article  CAS  PubMed  Google Scholar 

  55. Guan W, Osanai T, Kamada T, Hanada H, Ishizaka H, Onodera H, Iwasa A, Fujita N, Kudo S, OhkuboT OK (2003) Effect of allopurinol pretreatment on free radical generation after primary coronary angioplasty for acute myocardial infarction. J Cardiovasc Pharmacol 41:699–705

    Article  CAS  PubMed  Google Scholar 

  56. Butler R, Morris AD, Belch JJF, Hill A, Struthers AD (2000) Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 35:746–751

    Article  CAS  PubMed  Google Scholar 

  57. Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Iwasaki T (2003) Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 88:10045–10048

    Article  Google Scholar 

  58. Kögler H, Fraser H, McCune S, Altschuld R, Marban E (2003) Disproportionate enhancement of myocardial contractility by the xanthine oxidase inhibitor oxypurinol in failing rat myocardium. Cardiovasc Res 59:582–592

    Article  PubMed  Google Scholar 

  59. Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA, Marban E, Hare JM (2001) Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 104:2407–2411

    Article  CAS  PubMed  Google Scholar 

  60. Feig DI, Kang DH, Johnson RJ (2008) Uric acid and cardiovascular risk. N Engl J Med 359:1811–18 21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Galiardi AC, Miname MH, Santos RD (2009) Uric acid: a marker of increased cardiovascular risk. Atherosclerosis 202:11–17

    Article  Google Scholar 

  62. Krishnan E, Baker JF, Furst DE, Schumacher HR (2006) Gout and the risk of acute myocardial infarction. Arthritis Rheum 54:2688–2696

    Article  CAS  PubMed  Google Scholar 

  63. Krishnan E, Pandya BJ, Lingala B, Hariri A, Dabbous O (2012) Hyperuricemia and untreated gout are poor prognostic markers among those with a recent acute myocardial infarction. Arthritis Res Ther 14:R10

    Article  PubMed Central  PubMed  Google Scholar 

  64. Baker JF, Schumacher HR, Krishnan E (2007) Serum uric acid level and risk for peripheral arterial disease: analysis of data from the multiple risk factor intervention trial. Angiology 58:450–457

    Article  CAS  PubMed  Google Scholar 

  65. Krishnan E, Svendsen K, Neaton JD, Grandits G, Kuller RH (2008) Long-term cardiovascular mortality among middle – aged men with gout. Arch Intern Med 168:1104–1110

    Article  PubMed  Google Scholar 

  66. Choi HK, Curhan G (2007) Independent impact of gout on mortality and risk for coronary heart disease. Circulation 116:894–900

    Article  PubMed  Google Scholar 

  67. Hanassoulis G, Brophy JM, Richard H, Pilote L (2010) Gout, allopurinol use and heart failure outcomes. Arch Intern Med 170:1358–1364

    Article  Google Scholar 

  68. Noman A, Ang DS, Ogston S, Lang CC, Struthers AD (2010) Effect of high - dose allopurinol on exercise in patients with chronic stable angina: a randomized, placebo controlled crossover trial. Lancet 375:2161–2167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Feig DI, Soletsky B, Johnson RJ (2008) Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA 300:924–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Kelkar A, Kuo A, Frishman WH (2011) Allopurinol as a cardiovascular drug. Cardiol Rev 19:265–271

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The project of this review was suggested by our colleague Dr Annick Alperovitch, Emeritus Research Director at INSERM, eminent specialist of cardiovascular epidemiology. She also helped us with the content of section VII on the epidemiology of CVD as related to XO-

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Robert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, A.M., Robert, L. Xanthine Oxido-Reductase, Free Radicals and Cardiovascular Disease. A Critical Review. Pathol. Oncol. Res. 20, 1–10 (2014). https://doi.org/10.1007/s12253-013-9698-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9698-x

Keywords

Navigation