Skip to main content

Advertisement

Log in

MEG3: an Oncogenic Long Non-coding RNA in Different Cancers

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Long noncoding RNAs (lncRNAs) have recently considered as central regulators in diverse biological processes and emerged as vital players controlling tumorigenesis. Several lncRNAs can be classified into oncogenes and tumor suppressor genes depending on their function in cancer. A maternally expressed gene 3 (MEG3) gene transcripts a 1.6 kb lncRNA whose act as an antitumor component in different cancer cells, such as breast, liver, glioma, colorectal, cervical, gastric, lung, ovarian and osteosarcoma cancer cells. The present review highlights biological function of MEG3 to repress tumor through regulating the major tumor suppressor genes p53 and Rb, inhibiting angiogenesis-related factor, or controlling miRNAs. On the other hand, previous studies have also suggested that MEG3 mediates epithelial-mesenchymal transition (EMT). However, deregulation of MEG3 is associated with the  development and progression of cancer, suggesting that MEG3 may function as a potential biomarker and therapeutic target for human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD, Cao X, Jing X, Wang X, Siddiqui J, Wei JT, Robinson D, Iyer HK, Palanisamy N, Maher CA, Chinnaiyan AM (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29(8):742–749. https://doi.org/10.1038/nbt.1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ren S, Peng Z, Mao JH, Yu Y, Yin C, Gao X, Cui Z, Zhang J, Yi K, Xu W, Chen C, Wang F, Guo X, Lu J, Yang J, Wei M, Tian Z, Guan Y, Tang L, Xu C, Wang L, Gao X, Tian W, Wang J, Yang H, Wang J, Sun Y (2012) RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res 22(5):806–821. https://doi.org/10.1038/cr.2012.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 71(1):3–7. https://doi.org/10.1158/0008-5472.CAN-10-2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huarte M, Rinn JL (2010) Large non-coding RNAs: missing links in cancer? Hum Mol Genet 19(R2):R152–R161. https://doi.org/10.1093/hmg/ddq353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–719. https://doi.org/10.4161/rna.20481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brunner AL, Beck AH, Edris B, Sweeney RT, Zhu SX, Li R, Montgomery K, Varma S, Gilks T, Guo X, Foley JW, Witten DM, Giacomini CP, Flynn RA, Pollack JR, Tibshirani R, Chang HY, van de Rijn M, West RB (2012) Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol 13(8):R75. https://doi.org/10.1186/gb-2012-13-8-r75

    Article  PubMed  PubMed Central  Google Scholar 

  7. Martens-Uzunova ES, Bottcher R, Croce CM, Jenster G, Visakorpi T, Calin GA (2014) Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol 65(6):1140–1151. https://doi.org/10.1016/j.eururo.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  8. Schmitt AM, Chang HY (2016) Long noncoding RNAs in Cancer pathways. Cancer Cell 29(4):452–463. https://doi.org/10.1016/j.ccell.2016.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48(3):R45–R53. https://doi.org/10.1530/JME-12-0008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wylie AA, Murphy SK, Orton TC, Jirtle RL (2000) Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res 10(11):1711–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Rice K, Wang Y, Chen W, Zhong Y, Nakayama Y, Zhou Y, Klibanski A (2010) Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151(3):939–947. https://doi.org/10.1210/en.2009-0657

    Article  CAS  PubMed  Google Scholar 

  12. Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, Kohda T, Surani MA, Kaneko-Ishino T, Ishino F (2000) Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 5(3):211–220

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88(11):5119–5126. https://doi.org/10.1210/jc.2003-030222

    Article  CAS  PubMed  Google Scholar 

  14. Tan MC, Widagdo J, Chau YQ, Zhu T, Wong JJ, Cheung A, Anggono V (2017) The activity-induced Long non-coding RNA Meg3 modulates AMPA receptor surface expression in primary cortical neurons. Front Cell Neurosci 11:124. https://doi.org/10.3389/fncel.2017.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy SK, Wylie AA, Coveler KJ, Cotter PD, Papenhausen PR, Sutton VR, Shaffer LG, Jirtle RL (2003) Epigenetic detection of human chromosome 14 uniparental disomy. Hum Mutat 22(1):92–97. https://doi.org/10.1002/humu.10237

    Article  CAS  PubMed  Google Scholar 

  16. Zhao J, Zhang X, Zhou Y, Ansell PJ, Klibanski A (2006) Cyclic AMP stimulates MEG3 gene expression in cells through a cAMP-response element (CRE) in the MEG3 proximal promoter region. Int J Biochem Cell Biol 38(10):1808–1820. https://doi.org/10.1016/j.biocel.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  17. da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC (2008) Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 24(6):306–316. https://doi.org/10.1016/j.tig.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  18. Benetatos L, Vartholomatos G, Hatzimichael E (2011) MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 129(4):773–779. https://doi.org/10.1002/ijc.26052

    Article  CAS  PubMed  Google Scholar 

  19. Wallace C, Smyth DJ, Maisuria-Armer M, Walker NM, Todd JA, Clayton DG (2010) The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet 42(1):68–71. https://doi.org/10.1038/ng.493

    Article  CAS  PubMed  Google Scholar 

  20. Balik V, Srovnal J, Sulla I, Kalita O, Foltanova T, Vaverka M, Hrabalek L, Hajduch M (2013) MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas. J Neuro-Oncol 112(1):1–8. https://doi.org/10.1007/s11060-012-1038-6

    Article  CAS  Google Scholar 

  21. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282(34):24731–24742. https://doi.org/10.1074/jbc.M702029200

    Article  CAS  PubMed  Google Scholar 

  22. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. https://doi.org/10.1038/35042675

    Article  CAS  PubMed  Google Scholar 

  23. Vegran F, Rebucci M, Chevrier S, Cadouot M, Boidot R, Lizard-Nacol S (2013) Only missense mutations affecting the DNA binding domain of p53 influence outcomes in patients with breast carcinoma. PLoS One 8(1):e55103. https://doi.org/10.1371/journal.pone.0055103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16. https://doi.org/10.1038/358015a0

    Article  CAS  PubMed  Google Scholar 

  25. Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1(5):a001883. https://doi.org/10.1101/cshperspect.a001883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manfredi JJ (2010) The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24(15):1580–1589. https://doi.org/10.1101/gad.1941710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 26(8):1317–1322. https://doi.org/10.1093/carcin/bgi122

    Article  CAS  PubMed  Google Scholar 

  28. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412. https://doi.org/10.1038/nrm2395

    Article  CAS  PubMed  Google Scholar 

  29. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458(7242):1127–1130. https://doi.org/10.1038/nature07986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haupt S, Haupt Y (2017) P53 at the start of the 21st century: lessons from elephants. F1000Res 6:2041. https://doi.org/10.12688/f1000research.12682.1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu D, Su C, Jiang M, Shen Y, Shi A, Zhao F, Chen R, Shen Z, Bao J, Tang W (2016) Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3. Biochem Biophys Res Commun 471(2):290–295. https://doi.org/10.1016/j.bbrc.2016.01.169

    Article  CAS  PubMed  Google Scholar 

  32. Liu G, Chen X (2006) Regulation of the p53 transcriptional activity. J Cell Biochem 97(3):448–458. https://doi.org/10.1002/jcb.20700

    Article  CAS  PubMed  Google Scholar 

  33. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1(6):a000950. https://doi.org/10.1101/cshperspect.a000950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622. https://doi.org/10.1016/j.cell.2009.04.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee JT, Gu W (2010) The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 17(1):86–92. https://doi.org/10.1038/cdd.2009.77

    Article  CAS  PubMed  Google Scholar 

  36. Zhu J, Liu S, Ye F, Shen Y, Tie Y, Zhu J, Wei L, Jin Y, Fu H, Wu Y, Zheng X (2015) Long noncoding RNA MEG3 interacts with p53 protein and regulates partial p53 target genes in hepatoma cells. PLoS One 10(10):e0139790. https://doi.org/10.1371/journal.pone.0139790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Banerjee S, Kumar BR, Kundu TK (2004) General transcriptional coactivator PC4 activates p53 function. Mol Cell Biol 24(5):2052–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li N, Richard S (2016) Sam68 functions as a transcriptional coactivator of the p53 tumor suppressor. Nucleic Acids Res 44(18):8726–8741. https://doi.org/10.1093/nar/gkw582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chene P (2001) The role of tetramerization in p53 function. Oncogene 20(21):2611–2617. https://doi.org/10.1038/sj.onc.1204373

    Article  CAS  PubMed  Google Scholar 

  40. Follis AV, Llambi F, Ou L, Baran K, Green DR, Kriwacki RW (2014) The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nat Struct Mol Biol 21(6):535–543. https://doi.org/10.1038/nsmb.2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Joerger AC, Fersht AR (2007) Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26(15):2226–2242. https://doi.org/10.1038/sj.onc.1210291

    Article  CAS  PubMed  Google Scholar 

  42. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28(6):622–629. https://doi.org/10.1002/humu.20495

    Article  CAS  PubMed  Google Scholar 

  43. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331

    Article  CAS  PubMed  Google Scholar 

  44. Huang SS, Huang JS (2005) TGF-beta control of cell proliferation. J Cell Biochem 96(3):447–462. https://doi.org/10.1002/jcb.20558

    Article  CAS  PubMed  Google Scholar 

  45. Corre J, Hebraud B, Bourin P (2013) Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med 2(12):946–952. https://doi.org/10.5966/sctm.2013-0055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang P, Chen D, Ma H, Li Y (2017) Long non-coding RNA MEG3 regulates proliferation and apoptosis in non-small cell lung cancer via the miR-205-5p/LRP1 pathway. RSC Adv 7(78):49710–49719

    Article  CAS  Google Scholar 

  47. Shi Y, Lv C, Shi L, Tu G (2018) MEG3 inhibits proliferation and invasion and promotes apoptosis of human osteosarcoma cells. Oncol Lett 15(2):1917–1923. https://doi.org/10.3892/ol.2017.7463

    Article  CAS  PubMed  Google Scholar 

  48. Lyu Y, Lou J, Yang Y, Feng J, Hao Y, Huang S, Yin L, Xu J, Huang D, Ma B, Zou D, Wang Y, Zhang Y, Zhang B, Chen P, Yu K, Lam EW, Wang X, Liu Q, Yan J, Jin B (2017) Dysfunction of the WT1-MEG3 signaling promotes AML leukemogenesis via p53-dependent and -independent pathways. Leukemia 31(12):2543–2551. https://doi.org/10.1038/leu.2017.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25(38):5220–5227. https://doi.org/10.1038/sj.onc.1209615

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Z, Li M, Wang H, Agrawal S, Zhang R (2003) Antisense therapy targeting MDM2 oncogene in prostate cancer: effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proc Natl Acad Sci U S A 100(20):11636–11641. https://doi.org/10.1073/pnas.1934692100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Al-Khalaf HH, Lach B, Allam A, Hassounah M, Alkhani A, Elkum N, Alrokayan SA, Aboussekhra A (2008) Expression of survivin and p16(INK4a)/Cdk6/pRB proteins and induction of apoptosis in response to radiation and cisplatin in meningioma cells. Brain Res 1188:25–34. https://doi.org/10.1016/j.brainres.2007.10.074

    Article  CAS  PubMed  Google Scholar 

  52. He Y, Luo Y, Liang B, Ye L, Lu G, He W (2017) Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 8(42):73282–73295. https://doi.org/10.18632/oncotarget.19931

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kumar MM, Goyal R (2017) LncRNA as a therapeutic target for angiogenesis. Curr Top Med Chem 17(15):1750–1757. https://doi.org/10.2174/1568026617666161116144744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, Lin P, Dewhirst MW (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92(2):143–147

    Article  CAS  PubMed  Google Scholar 

  55. Johnson KE, Wilgus TA (2014) Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle) 3(10):647–661. https://doi.org/10.1089/wound.2013.0517

    Article  PubMed Central  Google Scholar 

  56. Lee SH, Lee S, Yang H, Song S, Kim K, Saunders TL, Yoon JK, Koh GY, Kim I (2014) Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis. Circ Res 115(2):215–226. https://doi.org/10.1161/CIRCRESAHA.115.303142

    Article  CAS  PubMed  Google Scholar 

  57. Zhan R, Xu K, Pan J, Xu Q, Xu S, Shen J (2017) Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis. Biochem Biophys Res Commun 490(3):700–706. https://doi.org/10.1016/j.bbrc.2017.06.104

    Article  CAS  PubMed  Google Scholar 

  58. Gordon FE, Nutt CL, Cheunsuchon P, Nakayama Y, Provencher KA, Rice KA, Zhou Y, Zhang X, Klibanski A (2010) Increased expression of angiogenic genes in the brains of mouse meg3-null embryos. Endocrinology 151(6):2443–2452. https://doi.org/10.1210/en.2009-1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Su W, Xie W, Shang Q, Su B (2015) The Long noncoding RNA MEG3 is downregulated and inversely associated with VEGF levels in osteoarthritis. Biomed Res Int 2015:356893. https://doi.org/10.1155/2015/356893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang CY, Yu MS, Li X, Zhang Z, Han CR, Yan B (2017) Overexpression of long non-coding RNA MEG3 suppresses breast cancer cell proliferation, invasion. and angiogenesis through AKT pathway Tumour Biol 39(6):1010428317701311. https://doi.org/10.1177/1010428317701311

    Article  PubMed  Google Scholar 

  61. Liu J, Li Q, Zhang KS, Hu B, Niu X, Zhou SM, Li SG, Luo YP, Wang Y, Deng ZF (2017) Downregulation of the Long non-coding RNA Meg3 promotes angiogenesis after ischemic brain injury by activating notch signaling. Mol Neurobiol 54(10):8179–8190. https://doi.org/10.1007/s12035-016-0270-z

    Article  CAS  PubMed  Google Scholar 

  62. Ruan W, Zhao F, Zhao S, Zhang L, Shi L, Pang T (2018) Knockdown of long noncoding RNA MEG3 impairs VEGF-stimulated endothelial sprouting angiogenesis via modulating VEGFR2 expression in human umbilical vein endothelial cells. Gene 649:32–39. https://doi.org/10.1016/j.gene.2018.01.072

    Article  CAS  PubMed  Google Scholar 

  63. He C, Yang W, Yang J, Ding J, Li S, Wu H, Zhou F, Jiang Y, Teng L, Yang J (2017) Long noncoding RNA MEG3 negatively regulates proliferation and angiogenesis in vascular endothelial cells. DNA Cell Biol 36(6):475–481. https://doi.org/10.1089/dna.2017.3682

    Article  CAS  PubMed  Google Scholar 

  64. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36. https://doi.org/10.1093/carcin/bgp220

    Article  CAS  PubMed  Google Scholar 

  65. Cheung HH, Lee TL, Rennert OM, Chan WY (2009) DNA methylation of cancer genome. Birth Defects Res C Embryo Today 87(4):335–350. https://doi.org/10.1002/bdrc.20163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022. https://doi.org/10.1101/gad.2037511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Delpu Y, Cordelier P, Cho WC, Torrisani J (2013) DNA methylation and cancer diagnosis. Int J Mol Sci 14(7):15029–15058. https://doi.org/10.3390/ijms140715029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Klibanski A (2008) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93(10):4119–4125. https://doi.org/10.1210/jc.2007-2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu X, Gao Q, Li P, Zhao Q, Zhang J, Li J, Koseki H, Wong J (2013) UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat Commun 4:1563

    Article  PubMed  Google Scholar 

  70. Lu KH, Li W, Liu XH, Sun M, Zhang ML, Wu WQ, Xie WP, Hou YY (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 13:461. https://doi.org/10.1186/1471-2407-13-461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhuo H, Tang J, Lin Z, Jiang R, Zhang X, Ji J, Wang P, Sun B (2016) The aberrant expression of MEG3 regulated by UHRF1 predicts the prognosis of hepatocellular carcinoma. Mol Carcinog 55(2):209–219. https://doi.org/10.1002/mc.22270

    Article  CAS  PubMed  Google Scholar 

  72. Li J, Bian EB, He XJ, Ma CC, Zong G, Wang HL, Zhao B (2016) Epigenetic repression of long non-coding RNA MEG3 mediated by DNMT1 represses the p53 pathway in gliomas. Int J Oncol 48(2):723–733. https://doi.org/10.3892/ijo.2015.3285

    Article  CAS  PubMed  Google Scholar 

  73. Yu B, Lv X, Su L, Li J, Yu Y, Gu Q, Yan M, Zhu Z, Liu B (2016) MiR-148a functions as a tumor suppressor by targeting CCK-BR via inactivating STAT3 and Akt in human gastric Cancer. PLoS One 11(8):e0158961. https://doi.org/10.1371/journal.pone.0158961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shamma A, Suzuki M, Hayashi N, Kobayashi M, Sasaki N, Nishiuchi T, Doki Y, Okamoto T, Kohno S, Muranaka H, Kitajima S, Yamamoto K, Takahashi C (2013) ATM mediates pRB function to control DNMT1 protein stability and DNA methylation. Mol Cell Biol 33(16):3113–3124. https://doi.org/10.1128/MCB.01597-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kruer TL, Dougherty SM, Reynolds L, Long E, de Silva T, Lockwood WW, Clem BF (2016) Expression of the lncRNA maternally expressed gene 3 (MEG3) contributes to the control of lung Cancer cell proliferation by the Rb pathway. PLoS One 11(11):e0166363. https://doi.org/10.1371/journal.pone.0166363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li Y, Ren M, Zhao Y, Lu X, Wang M, Hu J, Lu G, He S (2017) MicroRNA-26a inhibits proliferation and metastasis of human hepatocellular carcinoma by regulating DNMT3B-MEG3 axis. Oncol Rep 37(6):3527–3535. https://doi.org/10.3892/or.2017.5579

    Article  CAS  PubMed  Google Scholar 

  77. Gao Y, Huang P, Zhang J (2017) Hypermethylation of MEG3 promoter correlates with inactivation of MEG3 and poor prognosis in patients with retinoblastoma. J Transl Med 15(1):268. https://doi.org/10.1186/s12967-017-1372-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Polyak K (2011) Heterogeneity in breast cancer. J Clin Invest 121(10):3786–3788. https://doi.org/10.1172/JCI60534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Padua Alves C, Fonseca AS, Muys BR, de Barros ELBR, Burger MC, de Souza JE, Valente V, Zago MA, Silva WA Jr (2013) Brief report: the lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells 31(12):2827–2832. https://doi.org/10.1002/stem.1547

    Article  CAS  PubMed  Google Scholar 

  80. Hou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y, Zhao L, Zhang Y, Huang B, Lu J (2014) LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis 5:e1287. https://doi.org/10.1038/cddis.2014.249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li H, Zhu L, Xu L, Qin K, Liu C, Yu Y, Su D, Wu K, Sheng Y (2017) Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer. Mol Carcinog 56(1):3–17. https://doi.org/10.1002/mc.22338

    Article  CAS  PubMed  Google Scholar 

  82. Shahryari A, Jazi MS, Samaei NM, Mowla SJ (2015) Long non-coding RNA SOX2OT: expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis. Front Genet 6:196. https://doi.org/10.3389/fgene.2015.00196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Redis RS, Sieuwerts AM, Look MP, Tudoran O, Ivan C, Spizzo R, Zhang X, de Weerd V, Shimizu M, Ling H, Buiga R, Pop V, Irimie A, Fodde R, Bedrosian I, Martens JW, Foekens JA, Berindan-Neagoe I, Calin GA (2013) CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget 4(10):1748–1762. https://doi.org/10.18632/oncotarget.1292

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28(2):195–208. https://doi.org/10.1038/onc.2008.373

    Article  CAS  PubMed  Google Scholar 

  85. Zhao Z, Chen C, Liu Y, Wu C (2014) 17beta-estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level. Biochem Biophys Res Commun 445(2):388–393. https://doi.org/10.1016/j.bbrc.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  86. Zhang JJ, Guo SH, Jia BQ (2016) Down-regulation of long non-coding RNA MEG3 serves as an unfavorable risk factor for survival of patients with breast cancer. Eur Rev Med Pharmacol Sci 20(24):5143–5147

    PubMed  Google Scholar 

  87. Sun L, Li Y, Yang B (2016) Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53's transcriptional activity. Biochem Biophys Res Commun 478(1):323–329. https://doi.org/10.1016/j.bbrc.2016.05.031

    Article  CAS  PubMed  Google Scholar 

  88. Zhang W, Shi S, Jiang J, Li X, Lu H, Ren F (2017) LncRNA MEG3 inhibits cell epithelial-mesenchymal transition by sponging miR-421 targeting E-cadherin in breast cancer. Biomed Pharmacother 91:312–319. https://doi.org/10.1016/j.biopha.2017.04.085

    Article  CAS  PubMed  Google Scholar 

  89. Mondal T, Subhash S, Vaid R, Enroth S, Uday S, Reinius B, Mitra S, Mohammed A, James AR, Hoberg E, Moustakas A, Gyllensten U, Jones SJ, Gustafsson CM, Sims AH, Westerlund F, Gorab E, Kanduri C (2015) MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat Commun 6:7743. https://doi.org/10.1038/ncomms8743

    Article  CAS  PubMed  Google Scholar 

  90. Laursen L (2014) A preventable cancer. Nature 516(7529):S2–S3. https://doi.org/10.1038/516S2a

    Article  CAS  PubMed  Google Scholar 

  91. Li T, Zheng Q, An J, Wu M, Li H, Gui X, Pu H, Lu D (2016) SET1A cooperates with CUDR to promote liver Cancer growth and hepatocyte-like stem cell malignant transformation epigenetically. Mol Ther 24(2):261–275. https://doi.org/10.1038/mt.2015.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li H, An J, Wu M, Zheng Q, Gui X, Li T, Pu H, Lu D (2015) LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Oncotarget 6(29):27847–27864. https://doi.org/10.18632/oncotarget.4443

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, Yan X, Ye B, Li C, Xia P, Zhang G, Tian Y, Chen R, Fan Z (2015) The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 16(4):413–425. https://doi.org/10.1016/j.stem.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  94. Wang X, Sun W, Shen W, Xia M, Chen C, Xiang D, Ning B, Cui X, Li H, Li X, Ding J, Wang H (2016) Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J Hepatol 64(6):1283–1294. https://doi.org/10.1016/j.jhep.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  95. He JH, Han ZP, Liu JM, Zhou JB, Zou MX, Lv YB, Li YG, Cao MR (2017) Overexpression of Long non-coding RNA MEG3 inhibits proliferation of hepatocellular carcinoma Huh7 cells via negative modulation of miRNA-664. J Cell Biochem 118(11):3713–3721. https://doi.org/10.1002/jcb.26018

    Article  CAS  PubMed  Google Scholar 

  96. Zheng Q, Lin Z, Xu J, Lu Y, Meng Q, Wang C, Yang Y, Xin X, Li X, Pu H (2018) Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis 9(3):253

    Article  PubMed  PubMed Central  Google Scholar 

  97. He Y, Wu YT, Huang C, Meng XM, Ma TT, Wu BM, Xu FY, Zhang L, Lv XW, Li J (2014) Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta 1842(11):2204–2215. https://doi.org/10.1016/j.bbadis.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  98. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, Villano JL (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomark Prev 23(10):1985–1996. https://doi.org/10.1158/1055-9965.EPI-14-0275

    Article  CAS  Google Scholar 

  99. Galasso M, Dama P, Previati M, Sandhu S, Palatini J, Coppola V, Warner S, Sana ME, Zanella R, Abujarour R, Desponts C, Teitell MA, Garzon R, Calin G, Croce CM, Volinia S (2014) A large scale expression study associates uc.283-plus lncRNA with pluripotent stem cells and human glioma. Genome Med 6(10):76. https://doi.org/10.1186/s13073-014-0076-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ellis BC, Molloy PL, Graham LD (2012) CRNDE: a Long non-coding RNA involved in CanceR, neurobiology, and DEvelopment. Front Genet 3:270. https://doi.org/10.3389/fgene.2012.00270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yao Y, Ma J, Xue Y, Wang P, Li Z, Liu J, Chen L, Xi Z, Teng H, Wang Z, Li Z, Liu Y (2015) Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer Lett 359(1):75–86. https://doi.org/10.1016/j.canlet.2014.12.051

    Article  CAS  PubMed  Google Scholar 

  102. Wang P, Ren Z, Sun P (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113(6):1868–1874. https://doi.org/10.1002/jcb.24055

    Article  CAS  PubMed  Google Scholar 

  103. Shang S, Hua F, Hu ZW (2017) The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8(20):33972–33989. https://doi.org/10.18632/oncotarget.15687

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gong X, Huang M (2017) Long non-coding RNA MEG3 promotes the proliferation of glioma cells through targeting Wnt/beta-catenin signal pathway. Cancer Gene Ther 24(9):381–385. https://doi.org/10.1038/cgt.2017.32

    Article  CAS  PubMed  Google Scholar 

  105. Qin N, Tong GF, Sun LW, Xu XL (2017) Long noncoding RNA MEG3 suppresses glioma cell proliferation, migration, and invasion by acting as a competing endogenous RNA of miR-19a. Oncol Res 25(9):1471–1478. https://doi.org/10.3727/096504017X14886689179993

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang L, Liang X, Li Y (2017) Long non-coding RNA MEG3 inhibits cell growth of gliomas by targeting miR-93 and inactivating PI3K/AKT pathway. Oncol Rep 38(4):2408–2416. https://doi.org/10.3892/or.2017.5871

    Article  CAS  PubMed  Google Scholar 

  107. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66(4):683–691. https://doi.org/10.1136/gutjnl-2015-310912

    Article  PubMed  Google Scholar 

  108. Zhang Z, Zhou C, Chang Y, Zhang Z, Hu Y, Zhang F, Lu Y, Zheng L, Zhang W, Li X, Li X (2016) Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/beta-catenin pathway to promote growth and metastasis in colorectal cancer. Cancer Lett 376(1):62–73. https://doi.org/10.1016/j.canlet.2016.03.022

    Article  CAS  PubMed  Google Scholar 

  109. Sun L, Jiang C, Xu C, Xue H, Zhou H, Gu L, Liu Y, Xu Q (2017) Down-regulation of long non-coding RNA RP11-708H21.4 is associated with poor prognosis for colorectal cancer and promotes tumorigenesis through regulating AKT/mTOR pathway. Oncotarget 8(17):27929–27942. https://doi.org/10.18632/oncotarget.15846

    Article  PubMed  PubMed Central  Google Scholar 

  110. Han P, Li JW, Zhang BM, Lv JC, Li YM, Gu XY, Yu ZW, Jia YH, Bai XF, Li L, Liu YL, Cui BB (2017) The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/beta-catenin signaling. Mol Cancer 16(1):9. https://doi.org/10.1186/s12943-017-0583-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Menigatti M, Staiano T, Manser CN, Bauerfeind P, Komljenovic A, Robinson M, Jiricny J, Buffoli F, Marra G (2013) Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions. Oncogenesis 2:e56. https://doi.org/10.1038/oncsis.2013.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, Zhang L, Xiao LJ, Wan DC, Zhang JF, Waye MM (2015) The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 6(26):22513–22525. https://doi.org/10.18632/oncotarget.4154

    Article  PubMed  PubMed Central  Google Scholar 

  113. Qi P, Xu MD, Ni SJ, Shen XH, Wei P, Huang D, Tan C, Sheng WQ, Zhou XY, Du X (2015) Down-regulation of ncRAN, a long non-coding RNA, contributes to colorectal cancer cell migration and invasion and predicts poor overall survival for colorectal cancer patients. Mol Carcinog 54(9):742–750. https://doi.org/10.1002/mc.22137

    Article  CAS  PubMed  Google Scholar 

  114. Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z, Wu F, Mo YY (2013) LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res 41(9):4976–4987. https://doi.org/10.1093/nar/gkt182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yin DD, Liu ZJ, Zhang E, Kong R, Zhang ZH, Guo RH (2015) Decreased expression of long noncoding RNA MEG3 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Tumour Biol 36(6):4851–4859. https://doi.org/10.1007/s13277-015-3139-2

    Article  CAS  PubMed  Google Scholar 

  116. Zhu Y, Chen P, Gao Y, Ta N, Zhang Y, Cai J, Zhao Y, Liu S, Zheng J (2018) MEG3 activated by vitamin D inhibits colorectal Cancer cells proliferation and migration via regulating Clusterin. EBioMedicine 30:148–157. https://doi.org/10.1016/j.ebiom.2018.03.032

    Article  PubMed  PubMed Central  Google Scholar 

  117. Li L, Shang J, Zhang Y, Liu S, Peng Y, Zhou Z, Pan H, Wang X, Chen L, Zhao Q (2017) MEG3 is a prognostic factor for CRC and promotes chemosensitivity by enhancing oxaliplatin-induced cell apoptosis. Oncol Rep 38(3):1383–1392. https://doi.org/10.3892/or.2017.5828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cao X, Zhuang S, Hu Y, Xi L, Deng L, Sheng H, Shen W (2016) Associations between polymorphisms of long non-coding RNA MEG3 and risk of colorectal cancer in Chinese. Oncotarget 7(14):19054–19059. https://doi.org/10.18632/oncotarget.7764

    Article  PubMed  PubMed Central  Google Scholar 

  119. Forouzanfar MH, Foreman KJ, Delossantos AM, Lozano R, Lopez AD, Murray CJ, Naghavi M (2011) Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet 378(9801):1461–1484. https://doi.org/10.1016/S0140-6736(11)61351-2

    Article  PubMed  Google Scholar 

  120. Huang L, Liao LM, Liu AW, Wu JB, Cheng XL, Lin JX, Zheng M (2014) Overexpression of long noncoding RNA HOTAIR predicts a poor prognosis in patients with cervical cancer. Arch Gynecol Obstet 290(4):717–723. https://doi.org/10.1007/s00404-014-3236-2

    Article  CAS  PubMed  Google Scholar 

  121. Cao S, Liu W, Li F, Zhao W, Qin C (2014) Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. Int J Clin Exp Pathol 7(10):6776–6783

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Liao LM, Sun XY, Liu AW, Wu JB, Cheng XL, Lin JX, Zheng M, Huang L (2014) Low expression of long noncoding XLOC_010588 indicates a poor prognosis and promotes proliferation through upregulation of c-Myc in cervical cancer. Gynecol Oncol 133(3):616–623. https://doi.org/10.1016/j.ygyno.2014.03.555

    Article  CAS  PubMed  Google Scholar 

  123. Jiang S, Wang HL, Yang J (2015) Low expression of long non-coding RNA LET inhibits carcinogenesis of cervical cancer. Int J Clin Exp Pathol 8(1):806–811

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang M, Zhai X, Xia B, Wang Y, Lou G (2015) Long noncoding RNA CCHE1 promotes cervical cancer cell proliferation via upregulating PCNA. Tumour Biol 36(10):7615–7622. https://doi.org/10.1007/s13277-015-3465-4

    Article  CAS  PubMed  Google Scholar 

  125. Qin R, Chen Z, Ding Y, Hao J, Hu J, Guo F (2013) Long non-coding RNA MEG3 inhibits the proliferation of cervical carcinoma cells through the induction of cell cycle arrest and apoptosis. Neoplasma 60(5):486–492

    Article  CAS  PubMed  Google Scholar 

  126. Zhang J, Yao T, Wang Y, Yu J, Liu Y, Lin Z (2016) Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther 17(1):104–113. https://doi.org/10.1080/15384047.2015.1108496

    Article  CAS  PubMed  Google Scholar 

  127. Zhang J, Lin Z, Gao Y, Yao T (2017) Downregulation of long noncoding RNA MEG3 is associated with poor prognosis and promoter hypermethylation in cervical cancer. J Exp Clin Cancer Res 36(1):5. https://doi.org/10.1186/s13046-016-0472-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang J, Yao T, Lin Z, Gao Y (2017) Aberrant methylation of MEG3 functions as a potential plasma-based biomarker for cervical Cancer. Sci Rep 7(1):6271. https://doi.org/10.1038/s41598-017-06502-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang X, Wang Z, Wang J, Wang Y, Liu L, Xu X (2017) LncRNA MEG3 has anti-activity effects of cervical cancer. Biomed Pharmacother 94:636–643. https://doi.org/10.1016/j.biopha.2017.07.056

    Article  CAS  PubMed  Google Scholar 

  130. Torre LA, Siegel RL, Ward EM, Jemal A (2016) Global Cancer incidence and mortality rates and trends--An update. Cancer Epidemiol Biomark Prev 25(1):16–27. https://doi.org/10.1158/1055-9965.EPI-15-0578

    Article  Google Scholar 

  131. Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, Xie M, Xu L, De W, Wang Z, Wang J (2016) LncRNA HOXA11-AS promotes proliferation and invasion of gastric Cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res 76(21):6299–6310. https://doi.org/10.1158/0008-5472.CAN-16-0356

    Article  CAS  PubMed  Google Scholar 

  132. Xu TP, Huang MD, Xia R, Liu XX, Sun M, Yin L, Chen WM, Han L, Zhang EB, Kong R, De W, Shu YQ (2014) Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J Hematol Oncol 7:63. https://doi.org/10.1186/s13045-014-0063-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, Tang JY, Bao YJ, Hu Y, Lin Y, Sun D, Chen YX, Hong J, Chen H, Zou W, Fang JY (2016) LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov 6(7):784–801. https://doi.org/10.1158/2159-8290.CD-15-0921

    Article  CAS  PubMed  Google Scholar 

  134. Wu SW, Hao YP, Qiu JH, Zhang DB, Yu CG, Li WH (2017) High expression of long non-coding RNA CCAT2 indicates poor prognosis of gastric cancer and promotes cell proliferation and invasion. Minerva Med 108(4):317–323. https://doi.org/10.23736/S0026-4806.17.04703-6

    Article  PubMed  Google Scholar 

  135. Hu Y, Ma Z, He Y, Liu W, Su Y, Tang Z (2017) LncRNA-SNHG1 contributes to gastric cancer cell proliferation by regulating DNMT1. Biochem Biophys Res Commun 491(4):926–931. https://doi.org/10.1016/j.bbrc.2017.07.137

    Article  CAS  PubMed  Google Scholar 

  136. Yan J, Guo X, Xia J, Shan T, Gu C, Liang Z, Zhao W, Jin S (2014) MiR-148a regulates MEG3 in gastric cancer by targeting DNA methyltransferase 1. Med Oncol 31(3):879. https://doi.org/10.1007/s12032-014-0879-6

    Article  CAS  PubMed  Google Scholar 

  137. Wei GH, Wang X (2017) lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur Rev Med Pharmacol Sci 21(17):3850–3856

    PubMed  Google Scholar 

  138. Sun M, Xia R, Jin F, Xu T, Liu Z, De W, Liu X (2014) Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol 35(2):1065–1073. https://doi.org/10.1007/s13277-013-1142-z

    Article  CAS  PubMed  Google Scholar 

  139. Peng W, Si S, Zhang Q, Li C, Zhao F, Wang F, Yu J, Ma R (2015) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression. J Exp Clin Cancer Res 34:79. https://doi.org/10.1186/s13046-015-0197-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wong MCS, Lao XQ, Ho KF, Goggins WB, Tse SLA (2017) Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep 7(1):14300. https://doi.org/10.1038/s41598-017-14513-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dela Cruz CS, Tanoue LT, Matthay RA (2011) Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 32(4):605–644. https://doi.org/10.1016/j.ccm.2011.09.001

    Article  Google Scholar 

  142. Zhang L, Zhou XF, Pan GF, Zhao JP (2014) Enhanced expression of long non-coding RNA ZXF1 promoted the invasion and metastasis in lung adenocarcinoma. Biomed Pharmacother 68(4):401–407. https://doi.org/10.1016/j.biopha.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  143. Whiteside EJ, Seim I, Pauli JP, O'Keeffe AJ, Thomas PB, Carter SL, Walpole CM, Fung JN, Josh P, Herington AC, Chopin LK (2013) Identification of a long non-coding RNA gene, growth hormone secretagogue receptor opposite strand, which stimulates cell migration in non-small cell lung cancer cell lines. Int J Oncol 43(2):566–574. https://doi.org/10.3892/ijo.2013.1969

    Article  CAS  PubMed  Google Scholar 

  144. Nie FQ, Zhu Q, Xu TP, Zou YF, Xie M, Sun M, Xia R, Lu KH (2014) Long non-coding RNA MVIH indicates a poor prognosis for non-small cell lung cancer and promotes cell proliferation and invasion. Tumour Biol 35(8):7587–7594. https://doi.org/10.1007/s13277-014-2009-7

    Article  CAS  PubMed  Google Scholar 

  145. Liu Z, Sun M, Lu K, Liu J, Zhang M, Wu W, De W, Wang Z, Wang R (2013) The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21(WAF1/CIP1) expression. PLoS One 8(10):e77293. https://doi.org/10.1371/journal.pone.0077293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Qiu M, Xu Y, Yang X, Wang J, Hu J, Xu L, Yin R (2014) CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer. Tumour Biol 35(6):5375–5380. https://doi.org/10.1007/s13277-014-1700-z

    Article  CAS  PubMed  Google Scholar 

  147. Sun M, Liu XH, Lu KH, Nie FQ, Xia R, Kong R, Yang JS, Xu TP, Liu YW, Zou YF, Lu BB, Yin R, Zhang EB, Xu L, De W, Wang ZX (2014) EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis 5:e1298. https://doi.org/10.1038/cddis.2014.256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Song H, Li Y, Lee J, Schwartz AL, Bu G (2009) Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res 69(3):879–886. https://doi.org/10.1158/0008-5472.CAN-08-3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Huang XY, Shi GM, Devbhandari RP, Ke AW, Wang Y, Wang XY, Wang Z, Shi YH, Xiao YS, Ding ZB, Dai Z, Xu Y, Jia WP, Tang ZY, Fan J, Zhou J (2012) Low level of low-density lipoprotein receptor-related protein 1 predicts an unfavorable prognosis of hepatocellular carcinoma after curative resection. PLoS One 7(3):e32775. https://doi.org/10.1371/journal.pone.0032775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Terashima M, Tange S, Ishimura A, Suzuki T (2017) MEG3 Long noncoding RNA contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung Cancer cell lines. J Biol Chem 292(1):82–99. https://doi.org/10.1074/jbc.M116.750950

    Article  CAS  PubMed  Google Scholar 

  151. Xia Y, He Z, Liu B, Wang P, Chen Y (2015) Downregulation of Meg3 enhances cisplatin resistance of lung cancer cells through activation of the WNT/beta-catenin signaling pathway. Mol Med Rep 12(3):4530–4537. https://doi.org/10.3892/mmr.2015.3897

    Article  CAS  PubMed  Google Scholar 

  152. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30. https://doi.org/10.3322/caac.21166

    Article  PubMed  Google Scholar 

  153. Fu Y, Biglia N, Wang Z, Shen Y, Risch HA, Lu L, Canuto EM, Jia W, Katsaros D, Yu H (2016) Long non-coding RNAs, ASAP1-IT1, FAM215A, and LINC00472, in epithelial ovarian cancer. Gynecol Oncol 143(3):642–649. https://doi.org/10.1016/j.ygyno.2016.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen Q, Liu X, Xu L, Wang Y, Wang S, Li Q, Huang Y, Liu T (2016) Long non-coding RNA BACE1-AS is a novel target for anisomycin-mediated suppression of ovarian cancer stem cell proliferation and invasion. Oncol Rep 35(4):1916–1924. https://doi.org/10.3892/or.2016.4571

    Article  CAS  PubMed  Google Scholar 

  155. Wu DI, Wang T, Ren C, Liu L, Kong D, Jin X, Li X, Zhang G (2016) Downregulation of BC200 in ovarian cancer contributes to cancer cell proliferation and chemoresistance to carboplatin. Oncol Lett 11(2):1189–1194. https://doi.org/10.3892/ol.2015.3983

    Article  CAS  PubMed  Google Scholar 

  156. Szafron LM, Balcerak A, Grzybowska EA, Pienkowska-Grela B, Podgorska A, Zub R, Olbryt M, Pamula-Pilat J, Lisowska KM, Grzybowska E, Rubel T, Dansonka-Mieszkowska A, Konopka B, Kulesza M, Lukasik M, Kupryjanczyk J (2015) The putative oncogene, CRNDE, is a negative prognostic factor in ovarian cancer patients. Oncotarget 6(41):43897–43910. https://doi.org/10.18632/oncotarget.6016

    Article  PubMed  PubMed Central  Google Scholar 

  157. Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J, Zhang Y, Yang L, Zhong X, Wang LP, Jean S, Li C, Huang Q, Katsaros D, Montone KT, Tanyi JL, Lu Y, Boyd J, Nathanson KL, Li H, Mills GB, Zhang L (2014) A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 26(3):344–357. https://doi.org/10.1016/j.ccr.2014.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gao Y, Meng H, Liu S, Hu J, Zhang Y, Jiao T, Liu Y, Ou J, Wang D, Yao L, Liu S, Hui N (2015) LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b. Hum Mol Genet 24(3):841–852. https://doi.org/10.1093/hmg/ddu502

    Article  CAS  PubMed  Google Scholar 

  159. Sheng X, Li J, Yang L, Chen Z, Zhao Q, Tan L, Zhou Y, Li J (2014) Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer. Oncol Rep 32(1):277–285. https://doi.org/10.3892/or.2014.3208

    Article  CAS  PubMed  Google Scholar 

  160. Xiu YL, Sun KX, Chen X, Chen S, Zhao Y, Guo QG, Zong ZH (2017) Upregulation of the lncRNA Meg3 induces autophagy to inhibit tumorigenesis and progression of epithelial ovarian carcinoma by regulating activity of ATG3. Oncotarget 8(19):31714–31725. https://doi.org/10.18632/oncotarget.15955

    Article  PubMed  PubMed Central  Google Scholar 

  161. Moore DD, Luu HH (2014) Osteosarcoma. Cancer Treat Res 162:65–92. https://doi.org/10.1007/978-3-319-07323-1_4

    Article  PubMed  Google Scholar 

  162. Wang B, Su Y, Yang Q, Lv D, Zhang W, Tang K, Wang H, Zhang R, Liu Y (2015) Overexpression of Long non-coding RNA HOTAIR promotes tumor growth and metastasis in human osteosarcoma. Mol Cell 38(5):432–440. https://doi.org/10.14348/molcells.2015.2327

    Article  CAS  Google Scholar 

  163. Luo W, He H, Xiao W, Liu Q, Deng Z, Lu Y, Wang Q, Zheng Q, Li Y (2016) MALAT1 promotes osteosarcoma development by targeting TGFA via MIR376A. Oncotarget 7(34):54733–54743. https://doi.org/10.18632/oncotarget.10752

    Article  PubMed  PubMed Central  Google Scholar 

  164. Chan LH, Wang W, Yeung W, Deng Y, Yuan P, Mak KK (2014) Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene 33(40):4857–4866. https://doi.org/10.1038/onc.2013.433

    Article  CAS  PubMed  Google Scholar 

  165. Ruan W, Wang P, Feng S, Xue Y, Li Y (2016) Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells. Tumour Biol 37(3):4065–4073. https://doi.org/10.1007/s13277-015-4256-7

    Article  CAS  PubMed  Google Scholar 

  166. Yin Z, Ding H, He E, Chen J, Li M (2016) Overexpression of long non-coding RNA MFI2 promotes cell proliferation and suppresses apoptosis in human osteosarcoma. Oncol Rep 36(4):2033–2040. https://doi.org/10.3892/or.2016.5013

    Article  CAS  PubMed  Google Scholar 

  167. Tian ZZ, Guo XJ, Zhao YM, Fang Y (2015) Decreased expression of long non-coding RNA MEG3 acts as a potential predictor biomarker in progression and poor prognosis of osteosarcoma. Int J Clin Exp Pathol 8(11):15138–15142

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Sahin Y, Altan Z, Arman K, Bozgeyik E, Koruk Ozer M, Arslan A (2017) Inhibition of miR-664a interferes with the migration of osteosarcoma cells via modulation of MEG3. Biochem Biophys Res Commun 490(3):1100–1105. https://doi.org/10.1016/j.bbrc.2017.06.174

    Article  CAS  PubMed  Google Scholar 

  169. Yu F, Geng W, Dong P, Huang Z, Zheng J (2018) LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis 9(10):1014. https://doi.org/10.1038/s41419-018-1068-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xue R, Li Y, Li X, Ma J, An C, Ma Z (2018) miR-185 affected the EMT, cell viability and proliferation via DNMT1/MEG3 pathway in TGF-beta1-induced renal fibrosis. Cell Biol Int. https://doi.org/10.1002/cbin.11046

  171. He H, Dai J, Zhuo R, Zhao J, Wang H, Sun F, Zhu Y, Xu D (2018) Study on the mechanism behind lncRNA MEG3 affecting clear cell renal cell carcinoma by regulating miR-7/RASL11B signaling. J Cell Physiol 233(12):9503–9515. https://doi.org/10.1002/jcp.26849

    Article  CAS  PubMed  Google Scholar 

  172. Long J, Pi X (2018) lncRNA-MEG3 suppresses the proliferation and invasion of melanoma by regulating CYLD expression mediated by sponging miR-499-5p. Biomed Res Int 2018:2086564. https://doi.org/10.1155/2018/2086564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li Z, Yang L, Liu X, Nie Z, Luo J (2018) Long noncoding RNA MEG3 inhibits proliferation of chronic myeloid leukemia cells by sponging microRNA21. Biomed Pharmacother 104:181–192. https://doi.org/10.1016/j.biopha.2018.05.047

    Article  CAS  PubMed  Google Scholar 

  174. Xu J, Xu Y (2017) The lncRNA MEG3 downregulation leads to osteoarthritis progression via miR-16/SMAD7 axis. Cell Biosci 7:69. https://doi.org/10.1186/s13578-017-0195-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Li J, Zi Y, Wang W, Li Y (2018) Long noncoding RNA MEG3 inhibits cell proliferation and metastasis in chronic myeloid leukemia via targeting miR-184. Oncol Res 26(2):297–305. https://doi.org/10.3727/096504017X14980882803151

    Article  PubMed Central  Google Scholar 

  176. Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, Negrini M, Miotto E, Croce CM, Patel T (2011) microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30(47):4750–4756. https://doi.org/10.1038/onc.2011.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Guo W, Dong Z, Liu S, Qiao Y, Kuang G, Guo Y, Shen S, Liang J (2017) Promoter hypermethylation-mediated downregulation of miR-770 and its host gene MEG3, a long non-coding RNA, in the development of gastric cardia adenocarcinoma. Mol Carcinog 56(8):1924–1934. https://doi.org/10.1002/mc.22650

    Article  CAS  PubMed  Google Scholar 

  178. Wang Y, Kong D (2018) Knockdown of lncRNA MEG3 inhibits viability, migration, and invasion and promotes apoptosis by sponging miR-127 in osteosarcoma cell. J Cell Biochem 119(1):669–679. https://doi.org/10.1002/jcb.26230

    Article  CAS  PubMed  Google Scholar 

  179. Wang H, Li H, Zhang L, Yang D (2018) Overexpression of MEG3 sensitizes colorectal cancer cells to oxaliplatin through regulation of miR-141/PDCD4 axis. Biomed Pharmacother 106:1607–1615. https://doi.org/10.1016/j.biopha.2018.07.131

    Article  CAS  PubMed  Google Scholar 

  180. Wang P, Chen D, Ma H, Li Y (2017) LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis. Onco Targets Ther 10:5137–5149. https://doi.org/10.2147/OTT.S146423

    Article  PubMed  PubMed Central  Google Scholar 

  181. Liu Y, Yue P, Zhou T, Zhang F, Wang H, Chen X (2018) LncRNA MEG3 enhances (131)I sensitivity in thyroid carcinoma via sponging miR-182. Biomed Pharmacother 105:1232–1239. https://doi.org/10.1016/j.biopha.2018.06.087

    Article  CAS  PubMed  Google Scholar 

  182. Zhang J, Liu J, Xu X, Li L (2017) Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother Pharmacol 79(3):479–487. https://doi.org/10.1007/s00280-017-3238-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the King Abdulaziz City for Science and Technology (KACST) under the grant 1-17-01-001-0066.

Acronyms and Abbreviations

CRCColorectal cancer

cAMPCyclic AMP

DMRsDifferentially methylated regions.

DBDDNA binding domain

DNMTsDNA methyltransferases

URHF1E3 ubiquitin-protein ligase

GDF15Growth/differentiation factor-15

HCCHepatocellular carcinoma

HDACsHistone Deacetylases

HIF-1αHypoxia-Inducible Factor

IG-DMRIntergenic DMR

MEG3Maternally expressed gene 3

MDM2Murine/human double minute 2

NSCLCNon-small cell lung cancer

PCNAProliferating-cell nuclear antigen

CREResponse element

Rb`Retinoblastoma

TET2The ten–eleven translocation

TGF-βTransforming growth factor

TNMTumor node metastasis

TP53Tumor Suppressor Protein p53

VEGFVascular endothelial growth factor

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narasimha Reddy Parine.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Rugeebah, A., Alanazi, M. & Parine, N.R. MEG3: an Oncogenic Long Non-coding RNA in Different Cancers. Pathol. Oncol. Res. 25, 859–874 (2019). https://doi.org/10.1007/s12253-019-00614-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00614-3

Keywords

Navigation