Skip to main content
Log in

Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Rhodotorula glutinis TISTR 5159 is oleaginous red yeast that accumulates both lipids and carotenoids. It was cultured in palm oil mill effluent (POME) with only the addition of ammonium sulfate and Tween 20 as a suitable nitrogen source and surfactant, respectively. Response surface methodology (RSM) was applied to optimize initial chemical oxygen demand (COD) in POME, C/N ratio, and Tween 20 concentration for concomitant production of lipids and carotenoids. Among three investigated factors, C/N ratio contributed a significant effect upon lipid and carotenoids production. Analysis of response surface plots revealed that the optimum C/N ratio for the biomass was 140, while that for lipid content and carotenoids were higher at 180 and 170, respectively. The high level of the nitrogen source (with a low C/N ratio) enhanced the biomass, making the accumulation of lipids and carotenoids less preferable. Hence, the two-stage process was attempted as an optimal way for cell growth in the first stage and product accumulation in the second stage. The lipid yield and carotenoid production obtained in the two-stage process were higher than those in the one-stage process. In the semi-continuous fermentation, R. glutinis TISTR 5159 accumulated high lipid content and produced a considerably high concentration of carotenoids during long-term cultivation. Additionally, efficient COD removal by R. glutinis TISTR 5159 was observed. The biodiesel produced from yeast lipids was composed mainly of oleic and palmitic acids, similar to those from plant oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y., Z. Zhao, and F. Bai (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enz. Microb. Technol 41: 312–317.

    Article  Google Scholar 

  2. Somashekar, D. and R. Joseph (2000) Inverse relationship between carotenoid and lipid formation in Rhodotorula gracilis according to the C/N ratio of the growth medium. World J. Microbiol. Biotechnol. 16: 491–393.

    Article  CAS  Google Scholar 

  3. Ahmad, A. L., S. Ismail, and S. Bhatia (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalin. Water Treat. 157: 87–95.

    CAS  Google Scholar 

  4. Habib, M. B., F. M. Yusoff, S. M. Phang, K. J. Ang, and S. Mohamed (1997) Nutritional values of Chironomid larvae grown in palm oil mill effluent and algal culture. Aquacult. Eng. 158: 95–105.

    Article  Google Scholar 

  5. Hwang, T. K., S. M. Ong, C. C. Seow, and H. K. Tan (1978) Chemical composition of palm oil mill effluents. Planter 54: 749–756.

    CAS  Google Scholar 

  6. Phang, S. M. (1990) Algal production from agro-industrial and agricultural waste in Malaysia. Ambio. 19: 415–418.

    Google Scholar 

  7. Jeya, M., Y. W. Zhang, I. W. Kim, and J. K. Lee (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour. Technol. 100: 5155–5161.

    Article  CAS  Google Scholar 

  8. Heo, S. K., H. S. Lee, and S. D. Ha (2009) A predictive model for the growth rate of Bacillus cereus in broth by response surface methodology. Biotechnol. Bioproc. Eng. 14: 202–206.

    Article  CAS  Google Scholar 

  9. Papanikolaou, S. and G. Aggelis (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour. Technol. 82: 43–49.

    Article  CAS  Google Scholar 

  10. Emily, R., W. Easterling, T. French, R. Hernandez, and M. Licha (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour. Technol. 100: 356–361.

    Article  Google Scholar 

  11. Kim, J. H., S. K. Choi, Y. S. Park, C. W. Yun, W. D. Cho, K. M. Chee, and H. I. Chang (2006) Effect of culture conditions on astaxanthin formation in red yeast Xanthophyllomyces dendrorhous mutant JH1. J. Microbiol. Biotechnol. 16: 438–442.

    CAS  Google Scholar 

  12. Laouar, L., K. C. Lowe and B. J. Mulligan (1996) Yeast responses to nonionic surfactants. Enz. Microb. Technol. 18(6): 433–438.

    Article  CAS  Google Scholar 

  13. Kavadia, A., M. Komaitis, I. Chevalot, F. Blanchard, I. Marc, and G. Aggelis (2001) Lipid and γ-linolenic acid accumulation in strains of Zygomycetes growing on glucose. J. Am. Oil Chem. Soc. 78: 341–346.

    Article  CAS  Google Scholar 

  14. Bligh, E. G. and W. J. Dyer (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    CAS  Google Scholar 

  15. Aksu, Z. and A. T. Eren (2005) Carotenoids production by Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Proc. Biochem. 40: 2985–2991.

    Article  CAS  Google Scholar 

  16. A.P.H.A. (2005) Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC, USA.

    Google Scholar 

  17. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  18. Hansson, L. and M. Dostalek (1988) Effect of culture conditions on mycelial growth and production of γ-linolenic acid by the fungus Mortierella ramanniana. Appl. Microbiol. Biotechnol. 28: 240–246.

    Article  CAS  Google Scholar 

  19. Leman, J. (1997) Production of lipids containing γ-linolenic acid by batch culturing of Mortierella ramanniana. Mededelingen Fakulteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 62(4A-B): 1369–1372.

    CAS  Google Scholar 

  20. Bhosale, P. and R. V. Gadre (2001) β-Carotene production in sugarcane molasses by Rhodotorula glutinis mutant. J. Ind. Microbiol. Biotechnol. 26: 327–332.

    Article  CAS  Google Scholar 

  21. Kruszewska, J., G. Palamarczyk, and C. P. Kubicek (1990) Stimulation of exoprotein secretion by choline and Tween 80 in Trichoderma reesei QM 9414 correlates with increased activity of dolichol phosphate mannose synthase. J. Gen. Microbiol. 136: 1293–1298.

    CAS  Google Scholar 

  22. Dalmau, E., J. L. Montesinos, M. Lottib, and C. Casas (2000) Effect of different carbon sources on lipase production by Candida rugosa. Enz. Microb. Technol. 26: 657–663.

    Article  CAS  Google Scholar 

  23. Barker, T. W. and J. T. Worgan (1981) The utilization of palm oil processing effluents as substrates for microbial protein production by the fungus Aspergillus oryzae. Euro. Appl. Microbiol. Biotechnol. 11: 234–240.

    Article  CAS  Google Scholar 

  24. Stredanska, S. and J. Sajbidor (1993) Influence of carbon and nitrogen sources on the lipid accumulation and arachidonic acid production by Mortierella alpine. Acta. Biotechnol. 13: 185–191.

    Article  CAS  Google Scholar 

  25. Wynn, J. P. and C. Ratledge (2000) Evidence that the rate-limiting step for the biosysthesis of arachidonic acid in Mortierella alpine is at the level of the 18:3 to 20:3 elongase. Microbiol. 146: 2325–2331.

    CAS  Google Scholar 

  26. Xue, F., X. Zhang, H. Luo, and T. Tan (2006) A new method for preparing raw material for biodiesel production. Proc. Biochem. 41: 1699–1702.

    Article  CAS  Google Scholar 

  27. Ratledge, C. (1982) Microbial oils and fats: An assessment of their commercial potential. Ind. Microbiol. 16: 119–206.

    CAS  Google Scholar 

  28. Sattur, A. P. and N. G. Karanth (1989) Production of microbial lipids: Development of a mathematical model. Biotechnol. Bioeng. 34: 863–867.

    Article  CAS  Google Scholar 

  29. Kim, S. W., W. T. Seo, and Y. H. Park (1997) Enhanced synthesis of trispoic acid and β-carotene production in Blakeslea trispora by addition of a non-ionic surfactant, span 20. J. Ferment. Bioeng. 84: 330–332.

    Article  CAS  Google Scholar 

  30. Liu, Y. S. and J. Y. Wu (2007) Optimization of cell growth and carotenoid production of Xanthophyllomyces dendrorhous through statistical experiment design. Biochem. Eng. J. 36: 182–189.

    Article  Google Scholar 

  31. Caylak, B. (1998) Comparison of different production processes for bioethanol. Turk. J. Chem. 22: 351–359.

    CAS  Google Scholar 

  32. Hu, C., X. Zhao, J. Zhao, S. Wu, and A. K. Zhao (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour. Technol. 100: 4843–4847.

    Article  CAS  Google Scholar 

  33. Li, M., G. L. Liu, Z. Chi, and Z. M. Chi (2010) Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioener. 34: 101–107.

    Article  CAS  Google Scholar 

  34. O’Brien, R. D. (1988) Fats and Oils. Lancaster Technomic Publishing Co., UK.

    Google Scholar 

  35. Krisnangkura, K. (1986) A simple method for estimation of Cetane index of vegetable oil methyl esters. J. Am. Oil Chem. Soc. 63: 552–553.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamas Cheirsilp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saenge, C., Cheirsilp, B., Suksaroge, T.T. et al. Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol Bioproc E 16, 23–33 (2011). https://doi.org/10.1007/s12257-010-0083-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0083-2

Keywords

Navigation