Skip to main content
Log in

Identifying a gene knockout strategy using a hybrid of the bat algorithm and flux balance analysis to enhance the production of succinate and lactate in Escherichia coli

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The current problem for metabolic engineering is how to identify a suitable set of genes for knockout that can improve the production of certain metabolites and sustain the growth rate from the thousands of metabolic networks which are complex and combinatorial. Some approaches, such as OptKnock and OptGene, are developed to enhance the production of desired metabolites. However, the performances of these approaches are suboptimal and the obtained results are unsatisfactory because of computational limitations such as local minima. In this paper, we propose a hybrid of Bat Algorithm and Flux Balance Analysis (BATFBA) to enhance succinate and lactate production by identifying a set of genes for knock out. The Bat Algorithm is an optimisation algorithm, whereas Flux Balance Analysis (FBA) is a mathematical approach to analyse the flow of metabolites through a metabolic network. The Escherichia coli iJR904 dataset was used to determine optimal knockout genes, production rate, and growth rate. By applying this hybrid method to the iJR904 dataset, we found that BATFBA yielded better results than existing methods, such as OptKnock and a hybrid of Artificial Bee Colony algorithms and Flux Balance Analysis (ABCFBA), at predicting succinate and lactate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schilling, C. H. and B. O. Palsson (2000) Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J. Theor. Biol. 203: 249–283.

    Article  CAS  Google Scholar 

  2. Varma, A. and B. O. Palsson (1993) Metabolic capabilities of Escherichia Coli. II. Optimal growth patterns. J. Theor. Biol. 165: 503–522.

    Article  CAS  Google Scholar 

  3. Majewski, R. A. and M. M. Domach (1990) Simple constrained optimization view of acetate overflow in Escherichia Coli. Biotechnol. Bioeng. 35: 732–738.

    Article  CAS  Google Scholar 

  4. Ramakrishna, R., J. S. Edwards, A. McCulloch, and B. O. Palsson (2001) Flux balance analysis of mitochondrial energy metabolism: Consequences of systemic stoichiometric constraints. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280: R695–704.

    CAS  Google Scholar 

  5. Varma, A. and B. O. Palsson (1994) Metabolic flux balancing: Basic concepts, scientific and practical use. BioTechnol. 12: 994–998.

    Article  CAS  Google Scholar 

  6. Burgard, A. P., P. Pharkya, and C. D. Maranas (2003) OptKnock: A bilevelprogramming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84: 647–657.

    Article  CAS  Google Scholar 

  7. Patil, K. R., I. Rocha, J. Forster, and J. Nielsen (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6: 308.

    Article  Google Scholar 

  8. Whitley, D. (1994) A genetic algorithm tutorial. Stat. Comput. 4: 65–85.

    Article  Google Scholar 

  9. Rocha, M., P. Maia, R. Mendes, J. P. Pinto, E. C. Ferreira, J. Nielsen, K. R. Patil, and I. Rocha (2008) Natural computation meta-heuristics for the in-silico optimization of microbial strains. BMC Bioinformatics 9: 1–16.

    Article  Google Scholar 

  10. Zhu, Y., M. A. Eiteman, K. D. Witt, and E. Altman (2007) Homolactate fermentation by metabolically engineered Escherichia Coli strains. Appl. Environ. Microbiol. 73: 456–464.

    Article  CAS  Google Scholar 

  11. Chang, D. E., H. C. Jung, J. S. Rhee, and J. G. Pan (1999) Homofermentative production of D- or L-lactate in metabolically engineered Escherichia Coli RR1. Appl. Environ. Microbiol. 65: 1384–1389.

    CAS  Google Scholar 

  12. Mahadevan, R., A. P. Burgard, I. Famili, S. V. Dien, and H. S. Christophe (2005) Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals. Biotechnol. Bioproc. Eng. 10: 408–417.

    Article  CAS  Google Scholar 

  13. Soh, K. C. and V. Hatzimanikatis (2010) DREAMS of metabolism. Trends Biotechnol. 28: 501–508.

    Article  CAS  Google Scholar 

  14. Edward, J. S., R. U. Ibarra, and B. O. Palsson (2001). Insilico predictions of Escherichia Coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19: 125–130.

    Article  Google Scholar 

  15. Atsumi, S. and J. C. Liao (2008) Metabolic engineering for advanced biofuels production from Escherichia Coli. Curr. Opin. Biotechnol. 19: 414–419.

    Article  CAS  Google Scholar 

  16. Gomes, L. C. and M. Simoes (2012). 13C Metabolic flux analysis: From the principle to recent applications. Curr. Bioinform. 7: 77–86.

    Article  CAS  Google Scholar 

  17. Choon, Y. W., M. S. Mohamad, S. Deris, R. M. Illias, C. K. Chong, L. E. Chai, S. Omatu, and J. M. Corchado (2014) Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS One 9: e102744.

    Article  Google Scholar 

  18. Kennedy, J. and R. Eberhart (1995) Particle swarm optimization. Proceeding of the 1995 IEEE on Neural Networks. Perth, WA: IEEE.

    Google Scholar 

  19. Elbeltagia, E., T. Hegazyb, and D. Griersonb (2005) Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inform. 19: 43–53.

    Article  Google Scholar 

  20. Orth, J. D., I. Thiele, and B. Palsson (2010) What is flux balance analysis. Nat. Biotechnol. 28: 245–248.

    Article  CAS  Google Scholar 

  21. Yang, X. S. (2010) A new metaheuristicbat-inspired algorithm. pp. 65–74. In: C. Cruz, J. Gonzalez, N. Krasnogor, and G. Terraza (eds.). Nature Inspired Cooperative Strategies for Optimization. Granada, Spain.

    Chapter  Google Scholar 

  22. Yang, X. S. (2011) Bat Algorithm for multi-objective optimiza tion. Internat. J. Bio-Inspired Comput. 3: 267–274.

    Article  Google Scholar 

  23. Tsai, P. W., J. S. Pan, B. Y. Liao, M. J. Tsai, and V. Istanda, (2011) Bat algorithm inspired algorithm for solving numerical optimization problems. Appl. Mech. Mat.148–149: 134–137.

    Article  Google Scholar 

  24. Reed, J. L., T. D. Vo, C. H. Schilling, and B. O. Palsson (2003) An expanded genome-scale model of Escherichia Coli K-12 (iJR904 GSM/GPR). Genome Biol. 4: 1–12.

    Article  Google Scholar 

  25. Geem, Z. W., J. H. Kim, and G. V. Loganathan (2001) A new heuristic optimization algorithm: Harmony search. Simulation 76: 60–68.

    Article  Google Scholar 

  26. Sureja, N. (2012) New inspirations in nature: A survey. Internat. J. Computer Appl. Informat. Technol. 1: 21–24.

    Google Scholar 

  27. Sanchez, A. M., G. N. Bennett, and K. Y. San (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia Coli to increase succinate yield and productivity. Metabol. Eng. 7: 229–239.

    Article  CAS  Google Scholar 

  28. Li, M., P. Y. Ho, S. Yao, and K. Shimizu (2006) Effect of lpd-Agene knockout on the metabolism in Escherichia Coli based in enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments. J. Biotechnol. 122: 254–266.

    Article  CAS  Google Scholar 

  29. Lee, S. Y., D. Y. Lee, T. K. Kim, B. H. Kim, and S. J. Lee (2005) Systems biotechnology: Combined in silico and omicsanalyses for the improvement of microorganisms for industrial applications. pp. 193–231. In: I. Rigoutsos and G. Stephanopoulos (eds.). Systems Biology Volume II: Networks, Models, and Applications. NY, USA.

    Google Scholar 

  30. Bohl, K., L. F. Figueiredo, O. Hadicke, and S. Klamt (2010) CASOP GS: Computing intervention strategies targeted at production improvement in genome-scale metabolic networks. German Conference on Bioinformatics. September 20–22. Braunschweig, Germany.

    Google Scholar 

  31. Zhu, J. and K. Shimizu (2004) Effect of a single-gene knockout on the metabolic regulation in Escherichia Coli for D-lactate production under micro aerobic condition. J. Metabolic. Eng. 7: 104–115.

    Article  Google Scholar 

  32. Zhu, J. and K. Shimizu (2003) The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia Coli. Appl. Microbial. Biotechnol. 64: 367–375.

    Article  Google Scholar 

  33. Hong, S. H. (2007) Systems approaches to succinic acid producing microorganisms. Biotechnol. Bioproc. Eng. 12: 73–79.

    Article  CAS  Google Scholar 

  34. Lee, S. S. (2013) A hybrid of artificial bee colony and flux balance analysis for identifying optimum knockout strategies for producing high yields of lactate in Escherichia Coli. Adv. In Biomed. Infrastructure 477: 127–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Saberi Mohamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, P.S., Salleh, A.H.M., Mohamad, M.S. et al. Identifying a gene knockout strategy using a hybrid of the bat algorithm and flux balance analysis to enhance the production of succinate and lactate in Escherichia coli . Biotechnol Bioproc E 20, 349–357 (2015). https://doi.org/10.1007/s12257-014-0466-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0466-x

Keywords

Navigation