Skip to main content
Log in

Application of ZFN for Site Directed Mutagenesis of Rice SSIVa Gene

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Many successful studies on genome editing in plants have been reported and one of the popular genome editing technology used in plants is Zinc Finger Nucleases (ZFN), which are chimeric proteins composed of synthetic zinc finger-based DNA binding domain and a DNA cleavage domain. The objective of this research was to utilize ZFNs to induce a double-stranded break in SSIVa, a soluble starch synthase involved in starch biosynthesis pathway, leading to the regulation of the SSIVa expression. The isoform SSIVa is not yet well studied, thus, by modifying the endogenous loci in SSIVa, we can explore on the specific roles of this gene in starch biosynthesis and other possible functions it might play. In this study, we used ZFN-mediated targeted gene disruption in the coding sequence of the SSIVa rice gene in an effort to elucidate the functional role of the gene. Generation of transgenic plants carrying premature stop codons and substitution events, revealed no SSIVa mRNA expression, low starch contents and dwarf phenotypes. Remarkably, based on our analysis SSIVa gene disruption had no effect on other starch synthesis related genes as their expression remained at wild type levels. Therefore, the engineered ZFNs can efficiently cleave and stimulate mutations at SSIVa locus in rice to

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BeMiller, J. and R. Whistler Roy (2009) Genetics and physiology of starch development. 3rd ed., p. 24. Academic Press Elsevier Inc, Burlington.

    Google Scholar 

  2. Ai, Y. (2013) Structures, properties, and digestibility of resistant starch. Graduate theses and dissertations. Iowa State University, Ames City.

    Google Scholar 

  3. Kharabian-Masouleh, A., D. L. E. Waters, R. Reinke, R. Ward, and R. Henry (2012) SNP in starch biosynthesis genes associated with nutritional and functional properties of rice. Sci. Rep. 2: 557.

    Article  Google Scholar 

  4. Kim, Y. G., J. Cha, and S. Chandrasegaran (1996) Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA. 93: 1156–1160.

    Article  CAS  Google Scholar 

  5. Cathomen, T. and J. K. Joung (2008) Zinc-finger nucleases: The next generation emerges. Mol. Ther. 16: 1200–1207.

    Article  CAS  Google Scholar 

  6. Kim, Y. G., Y. Shi, J. M. Berg, and S. Chandrasegaran (1997) Site-specific cleavage of DNARNA hybrids by zinc finger/FokI cleavage domain fusions. Gene 203: 43–49.

    Article  CAS  Google Scholar 

  7. Klug, A. (2005) Towards therapeutic applications of engineered zinc finger proteins. FEBS Lett. 579: 892–894.

    Article  CAS  Google Scholar 

  8. Mani, M., K. Kandavelou, F. J. Dy, S. Durai, and S. Chandrasegaran (2005) Design, engineering, and characterization of zinc finger nucleases. Biochem. Biophys. Res. Commun. 335: 447–457.

    Article  CAS  Google Scholar 

  9. Lee, H. J., S. E. Abdula, M. G. Jee, D. W. Jang, and Y. G. Cho (2011) High-efficiency and rapid Agrobacterium-mediated genetic transformation method using germinating rice seeds. J. Plant Biotechnol. 38: 251–257.

    Article  Google Scholar 

  10. Thole, V., S. C. Alves, B. Worland, M. W. Bevan, and P. Vain (2009) A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon TDNA insertional mutants. Nat. Protocols 4: 650–661.

    Article  CAS  Google Scholar 

  11. Stitt, M., R. M. Lilley, R. Gerhardt, and H. W. Heldt (1989) Determination of metabolite levels in specific cells and subcellular compartments of plant leaves. Method Enzymol. 174: 518–522.

    Article  CAS  Google Scholar 

  12. Park, S. H., S. W. Bang, J. S. Jeong, H. R. Jung, M. C. F. R. Redillas, H. I. Kim, K. H. Lee, Y. S. Kim, and J. K. Kim (2012) Analysis of the APX, PGD1 and R1G1B constitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. Planta 235: 1397–1408.

    Article  CAS  Google Scholar 

  13. Osakabe, Y. and K. Osakabe (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol. 56: 389–400.

    Article  CAS  Google Scholar 

  14. Kim, E., S. Kim, D. H. Kim, B. S. Choi, I. Y. Choi, and J. S. Kim (2012) Precision genome engineering with programmable DNAnicking enzymes. Genome Res. 22: 1327–1333.

    Article  CAS  Google Scholar 

  15. Ramirez, C. L., M. T. Certo, C. Mussolino, M. J. Goodwin, T. J. Cradick, and A. P. McCaffrey (2012) Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. 40: 5560–5568.

    Article  CAS  Google Scholar 

  16. Wang, J., G. Friedman, Y. Doyon, N. S. Wang, C. J. Li, and J. C. Miller (2012) Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. 22: 1316.

    Article  Google Scholar 

  17. Hennen-Bierwagen, T. A., Q. H. Lin, F. Grimaud, V. Planchot, P. L. Keeling, and M. G. James (2009) Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: A model for regulation of carbon allocation in maize amyloplasts. Plant Physiol. 149: 1541–1559.

    Article  CAS  Google Scholar 

  18. James, M. G., K. Denyer, and A. M. Myers (2003) Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 6: 215–222.

    Article  CAS  Google Scholar 

  19. Szydlowski, N., P. Ragel, S. Raynaud, M. M. Lucas, I. Roldán, M. Montero, F. J. Muoz, M. Ovecka, A. Bahaji, V. Planchot, J. Pozueta-Romero, C. D’Hulst, and A. Mérida (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class II starch synthases. The Plant Cell 21: 2443–2357.

    Article  CAS  Google Scholar 

  20. Taylor, M. C., M. Pickel, K. J. Lu, C. Hylton, R. Feil, S. Eicke, J. Lunn, S. Zeeman, and A. Smith (2013) Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion. New Phytol. 200: 1064–1075.

    Article  Google Scholar 

  21. Arjona, F., J. Li, S. Raynaud, E. Fernandez, F. Munoz, M. Ovecka, P. Ragel, A. Bahaji, J. Romero, and A. Merida (2011) Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch. Plant Biotechnol. J. 9: 1049–1060.

    Article  Google Scholar 

  22. Gibon, Y., E.T. Pyl, R. Sulpice, J. E. Lunn, M. Hohne, M. Gunther, and M. Stitt (2009) Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ. 32: 859–874.

    Article  CAS  Google Scholar 

  23. Roldan, I., M. M. Lucas, D. Delvalle, V. Planchot, S. Jimenez, R. Perez, S. Ball, C. D’Hulst, and A. Merida (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. 49: 492–504.

    Article  CAS  Google Scholar 

  24. Lee, H. J., M. G. Jee, J. K. Kim, F. M. Nogoy, M. C. Niño, D. A. Yu, and M. S. Kim (2014) Modification of starch composition using RNAi targeting soluble starch synthase I in Japonica rice. Plant Breed. Biotech. 2: 301–312.

    Article  Google Scholar 

  25. Orzechowski, S. (2008) Starch metabolism in leaves. Acta Biochim. Polon. 55: 435–445.

    CAS  Google Scholar 

  26. Sun, M. M., S. E. Abdula, H. J. Lee, Y. C. Cho, L. Z. Han, and H. J. Koh (2011) Molecular aspect of good eating quality formation in Japonica Rice. PLoS ONE 6: e18385.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Kyoo Kang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, YJ., Nogoy, F.M., Lee, SK. et al. Application of ZFN for Site Directed Mutagenesis of Rice SSIVa Gene. Biotechnol Bioproc E 23, 108–115 (2018). https://doi.org/10.1007/s12257-017-0420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0420-9

Keywords

Navigation