Skip to main content
Log in

Optimization and Modeling of Curdlan Production under Multi-physiological-parameters Process Control by Agrobacterium radiobacter Mutant A-15 at High Initial Glucose

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The optimization and kinetic modeling of curdlan synthesis by Agrobacterium radiobacter mutant A-15 under multi-physiological-parameters process control, especially employing the on-line oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER) were performed in a 50-L fermentor. Results indicated that the maximum production of curdlan reach about 32.5 g/L with a glucose conversion yield of 49.5%, the maximum specific growth rate was about 0.5338 h−1, the kinetics equation were of positive significance for production. It also demonstrated that A-15 was insensitive to catabolite repression during polysaccharide production for its maintaining high conversion yield in the medium contained 6.6% (W/V) initial glucose. In addition, the OUR and CER at the stationary growth stage showed a positive correlation with curdlan synthesis. This work will provide more theoretical support for large-scale curdlan production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McIntosh, M., B. A. Stone, and V. A. Stanisich (2005) Curdlan and other bacterial (1→3)-beta-D-glucans. Appl. Microbiol. Biotechnol. 68: 163–173.

    Article  CAS  PubMed  Google Scholar 

  2. Yang, M., Y. Zhu, Y. Li, J. Bao, X. Fan, Y. Qu, Y. Wang, Z. Hu, and Q. Li (2016) Production and optimization of curdlan produced by Pseudomonas sp. QL212. Int. J. Biol. Macromol. 89: 25–34.

    Article  CAS  PubMed  Google Scholar 

  3. Freitas, F., C. A. V. Torres, and M. A. M. Reis (2017) Engineering aspects of microbial exopolysaccharide production. Bioresour. Technol. 245: 1674–1683.

    Article  CAS  PubMed  Google Scholar 

  4. Zhan, X. B., C. C. Lin, and H. T. Zhang (2012) Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl. Microbiol. Biotechnol. 93: 525–531.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, J. H. and Y. H. Park (2001) Optimal production of curdlan by Agrobacterium sp. with feedback inferential control of optimal pH profile. Biotechnol. Lett. 23: 525–530.

    Article  CAS  Google Scholar 

  6. Cai, Z. and H. Zhang (2017) Recent progress on curdlan provided by functionalization strategies. Food Hydrocoll. 68: 128–135.

    Article  CAS  Google Scholar 

  7. Wang, X. Y. Z., J. J. Dong, G. C. Xu, R. Z. Han, and Y. Ni (2016) Enhanced curdlan production with nitrogen feeding during polysaccharide synthesis by Rhizobium radiobacter. Carbohydr. Polym. 150: 385–391.

    Article  CAS  PubMed  Google Scholar 

  8. Mangolim, C. S., T. T. da Silva, V. C. Fenelon, L. N. Koga, S. B. S. Ferreira, M. L. Bruschi, and G. Matioli (2017) Description of recovery method used for curdlan produced by Agrobacterium sp. IFO 13140 and its relation to the morphology and physicochemical and technological properties of the polysaccharide. PLoS One. 12: e0171469.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liang, Y., L. Zhu, H. Ding, M. Gao, Z. Zheng, J. Wu, and X. Zhan (2017) Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442. Carbohydr. Polym. 157: 1687–1694.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, M. K., I. Y. Lee, J. H. Ko, Y. H. Rhee, and Y. H. Park (1999) Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnol. Bioeng. 62: 317–323.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, L. J., J. R. Wu, Z. Z. Zheng, C. C. Lin, and X. B. Zhan (2011) Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production. Appl. Biochem. Microbiol. 47: 487.

    Article  CAS  Google Scholar 

  12. Wu, J. R., L. J. Yu, X. B. Zhan, Z. Y. Zheng, J. Lu, and C. C. Lin (2012) NtrC-dependent regulatory network for curdlan biosynthesis in response to nitrogen limitation in Agrobacterium sp. ATCC 31749. Process Biochem. 47: 1552–1558.

    Article  CAS  Google Scholar 

  13. Zhang, Q., J. Sun, Z. Wang, H. Hang, W. Zhao, Y. Zhuang, and J. Chu (2018) Kinetic analysis of curdlan production by Alcaligenes faecalis with maltose, sucrose, glucose and fructose as carbon sources. Bioresour. Technol. 259: 319–324.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, I. Y., W. T. Seo, G. J. Kim, M. K. Kim, C. S. Park, and Y. H. Park (1997) Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species. J. Ind. Microbiol. Biotechnol. 18: 255–259.

    Article  CAS  Google Scholar 

  15. Liu, Y., Q. Gu, F. K. Ofosu, and X. Yu (2015) Isolation and characterization of curdlan produced by Agrobacterium HX1126 using alpha-lactose as substrate. Int. J. Biol. Macromol. 81: 498–503.

    Article  CAS  PubMed  Google Scholar 

  16. Shih, I. L., J. Y. Yu, C. Hsieh, and J. Y. Wu (2009) Production and characterization of curdlan by Agrobacterium sp. Biochem. Eng. J. 43: 33–40.

    Article  CAS  Google Scholar 

  17. Ruiz, B., A. Chavez, A. Forero, Y. Garcia-Huante, A. Romero, M. Sanchez, D. Rocha, B. Sanchez, R. Rodriguez-Sanoja, S. Sanchez, and E. Langley (2010) Production of microbial secondary metabolites: regulation by the carbon source. Crit. Rev. Microbiol. 36: 146–167.

    Article  CAS  PubMed  Google Scholar 

  18. Don, M. M. and N. F. Shoparwe (2010) Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose. Biochem. Eng. J. 49: 95–103.

    Article  CAS  Google Scholar 

  19. Zhang, H. T., L. Zhu, D. Liu, X. B. Zhan, J. Ding, and C. C. Lin (2015) Model-based estimation of optimal dissolved oxygen profile in Agrobacterium sp. fed-batch fermentation for improvement of curdlan production under nitrogen-limited condition. Biochem. Eng. J. 103: 12–21.

    Article  CAS  Google Scholar 

  20. Sengupta, D., S. Datta, and D. Biswas (2018) Towards a better production of bacterial exopolysaccharides by controlling genetic as well as physico-chemical parameters. Appl. Microbiol. Biotechnol. 102: 1587–1598.

    Article  CAS  PubMed  Google Scholar 

  21. Jin, L. H., H. J. Um, C. J. Yin, Y. H. Kim, and J. H. Lee (2008) Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift. J. Biotechnol. 138: 80–87.

    Article  CAS  PubMed  Google Scholar 

  22. Ruffing, A. M. and R. R. Chen (2012) Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis. Microb. Cell Fact. 11: 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalyanasundaram, G. T., M. Doble, and S. N. Gummadi (2012) Production and downstream processing of (1→3)-[beta]-D-glucan from mutant strain of Agrobacterium sp. ATCC 31750. AMB Express. 2: 31.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu, L., J. Wu, J. Liu, X. Zhan, Z. Zheng, and C. C. Lin (2011) Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates. Biotechnol. Bioprocess Eng. 16: 34–41.

    Article  CAS  Google Scholar 

  25. Laws, A., Y. Gu, and V. Marshall (2001) Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol. Adv. 19: 597–625.

    Article  CAS  PubMed  Google Scholar 

  26. De Vuyst, L. and B. Degeest (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153–177.

    Article  CAS  PubMed  Google Scholar 

  27. Sandhya, V. and S. Z. Ali (2015) The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology. 84: 512–519.

    Article  CAS  Google Scholar 

  28. Zheng, Z. Y., J. W. Lee, X. B. Zhan, Z. Shi, L. Wang, L. Zhu, J. R. Wu, and C. C. Lin (2007) Effect of metabolic structures and energy requirements on curdlan production by Alcaligenes faecalis. Biotechnol. Bioprocess Eng. 12: 359–365.

    Article  CAS  Google Scholar 

  29. Puliga, S. L., S. Handa, S. N. Gummadi, and M. Doble (2010) Enhancement and scale-up of β-(1, 3) glucan production by Agrobacterium sp. Int. J. Food. Eng. 6: 6.

    Article  Google Scholar 

  30. Zhang, H. T., X. B. Zhan, Z. Y. Zheng, J. R. Wu, N. English, X. B. Yu, and C. C. Lin (2012) Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Appl. Microbiol. Biotechnol. 93: 367–379.

    Article  PubMed  Google Scholar 

  31. Zhang, H. T., X. B. Zhan, Z. Y. Zheng, J. R. Wu, X. B. Yu, Y. Jiang, and C. C. Lin (2011) Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions. Appl. Microbiol. Biotechnol. 91: 163–175.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, H., J. C. Setubal, X. Zhan, Z. Zheng, L. Yu, J. Wu, and D. Chen (2011) Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis. J. Ind. Microbiol. Biotechnol. 38: 667–677.

    Article  CAS  PubMed  Google Scholar 

  33. Valepyn, E., N. Berezina, and M. Paquot (2012) Optimization of production and preliminary characterization of new exopolysaccharides from Gluconacetobacter hansenii LMG1524. Adv. Microbiol. 2: 488–496.

    Article  Google Scholar 

  34. Sivakumar, T., T. Shankar, V. Thangapandian, and S. Mahendran (2016) Media optimization for exopolysaccharide producing Klebsiella pneumoniae KU215681 under varying cultural conditions. Int. J. Biochem. Biophys. 4: 16–23.

    Article  CAS  Google Scholar 

  35. Harada, T., K. Fujimori, S. Hirose, and M. Masada (1966) Growth and β-glucan 10C3K production by a mutant of Alcaligenes faecalis var. myxogenes in defined medium. Agric. Biol. Chem. 30: 764–769.

    Article  CAS  Google Scholar 

  36. Liang, Y., L. Zhu, M. Gao, Z. Zheng, J. Wu, and X. Zhan (2018) Influence of Tween-80 on the production and structure of water-insoluble curdlan from Agrobacterium sp. Int. J. Biol. Macromol. 106: 611–619.

    Article  CAS  PubMed  Google Scholar 

  37. Rafigh, S. M., A. V. Yazdi, M. Vossoughi, A. A. Safekordi, and M. Ardjmand (2014) Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN. Int. J. Biol. Macromol. 70: 463–473.

    Article  CAS  PubMed  Google Scholar 

  38. Wu, J., X. Zhan, H. Liu, and Z. Zheng (2008) Enhanced production of curdlan by Alcaligenes faecalis by selective feeding with ammonia water during the cell growth phase of fermentation. Sheng Wu Gong Cheng Xue Bao. 24: 1035–1039.

    Article  CAS  PubMed  Google Scholar 

  39. Benkortbi, O., S. Hanini, and F. Bentahar (2007) Batch kinetics and modelling of Pleuromutilin production by Pleurotus mutilis. Biochem. Eng. J. 36: 14–18.

    Article  CAS  Google Scholar 

  40. Phillips, K. R., J. Pik, H. G. Lawford, B. Lavers, A. Kligerman, and G. R. Lawford (1983) Production of curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture. Can. J. Microbiol. 29: 1331–1338.

    Article  CAS  PubMed  Google Scholar 

  41. Weiss, R. M. and D. F. Ollis (1980) Extracellular microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation. Biotechnol. Bioeng. 22: 859–873.

    Article  CAS  Google Scholar 

  42. Lee, I. Y., M. K. Kim, J. H. Lee, W. T. Seo, J. K. Jung, H. W. Lee, and Y. H. Park (1999) Influence of agitation speed on production of curdlan by Agrobacterium species. Bioprocess Eng. 20: 283–287.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Natural Science Foundation of Guangxi Province (CN) (2017GXNSFAA198128) and Shan Dong Fu yang biological technology Co., Ltd, China. The work was also thanks to the Shanghai (P.R. China) Guoqiang biochemical engineering equipment Co., Ltd, for providing the systems of automatic control fermentor supported with Biostar software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Additional information

Competing Interests

The authors declare that they have no competing interests.

Ethical Statement

Neither ethical approval nor informed consent was required for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, W., Chen, S. et al. Optimization and Modeling of Curdlan Production under Multi-physiological-parameters Process Control by Agrobacterium radiobacter Mutant A-15 at High Initial Glucose. Biotechnol Bioproc E 26, 1012–1022 (2021). https://doi.org/10.1007/s12257-021-0028-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0028-y

Keywords

Navigation