Skip to main content

Advertisement

Log in

MicroRNA-21 in Cardiovascular Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

MicroRNA-21 (miR-21) is a highly expressed microRNA (miRNA) in cardiovascular system. Recent studies have revealed that its expression is deregulated in heart and vasculature under cardiovascular disease conditions such as proliferative vascular disease, cardiac hypertrophy and heart failure, and ischemic heart disease. miR-21 is found to play important roles in vascular smooth muscle cell proliferation and apoptosis, cardiac cell growth and death, and cardiac fibroblast functions. Accordingly, miR-21 is proven to be involved in the pathogenesis of the above-mentioned cardiovascular diseases as demonstrated by both loss-of-function and gain-of-function approaches. Programmed cell death 4 (PDCD4), phosphatase and tensin homology deleted from chromosome 10 (PTEN), sprouty1 (SPRY1), and sprouty2 (SPRY2) are the current identified target genes of miR-21 that are involved in miR-21-mediated cardiovascular effects. miR-21 might be a novel therapeutic target in cardiovascular diseases. This review article summarizes the research progress regarding the roles of miR-21 in cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.

    Article  CAS  PubMed  Google Scholar 

  2. Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855–862.

    Article  CAS  PubMed  Google Scholar 

  3. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.

    Article  CAS  PubMed  Google Scholar 

  4. Friedman, J. M., & Jones, P. A. (2008). MicroRNAs: critical mediators of differentiation, development and disease. Swiss Medical Weekly, 139(33–34), 466–472.

    Google Scholar 

  5. Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766–770.

    Article  CAS  PubMed  Google Scholar 

  6. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  7. Pushparaj, P. N., Aarthi, J. J., Kumar, S. D., & Manikandan, J. (2008). RNAi and RNAa—the yin and yang of RNAome. Bioinformation, 2(6), 235–237.

    PubMed  Google Scholar 

  8. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.

    Article  CAS  PubMed  Google Scholar 

  9. Krichevsky, A. M., & Gabriely, G. (2009). miR-21: a small multi-faceted RNA. Journal of Cellular and Molecular Medicine, 13(1), 39–53.

    Article  CAS  PubMed  Google Scholar 

  10. Selcuklu, S. D., Donoghue, M. T., & Spillane, C. (2009). miR-21 as a key regulator of oncogenic processes. Biochemical Society Transactions, 37(Pt 4), 918–925.

    Article  CAS  PubMed  Google Scholar 

  11. Fujita, S., Ito, T., Mizutani, T., Minoguchi, S., Yamamichi, N., Sakurai, K., et al. (2008). miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. Journal of Molecular Biology, 378(3), 492–504.

    Article  CAS  PubMed  Google Scholar 

  12. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12(9), 735–739.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, C. (2008). MicroRNomics: a newly emerging approach for disease biology. Physiological Genomics, 33(2), 139–147.

    Article  PubMed  Google Scholar 

  14. Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circulation Research, 100(11), 1579–1588.

    Article  CAS  PubMed  Google Scholar 

  15. Suarez, Y., Fernandez-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100(8), 1164–1173.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? American Journal of Pathology, 170(6), 1831–1840.

    Article  CAS  PubMed  Google Scholar 

  17. Roy, S., Khanna, S., Hussain, S. R., Biswas, S., Azad, A., Rink, C., et al. (2009). MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovascular Research, 82(1), 21–29.

    Article  CAS  PubMed  Google Scholar 

  18. Lin, Y., Liu, X., Cheng, Y., Yang, J., Huo, Y., & Zhang, C. (2009). Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. Journal of Biological Chemistry, 284(12), 7903–7913.

    Article  CAS  PubMed  Google Scholar 

  19. Oudit, G. Y., Sun, H., Kerfant, B. G., Crackower, M. A., Penninger, J. M., & Backx, P. H. (2004). The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. Journal of Molecular and Cellular Cardiology, 37(2), 449–471.

    Article  CAS  PubMed  Google Scholar 

  20. Lankat-Buttgereit, B., & Göke, R. (2009). The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biology of the Cell, 101(6), 309–317.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, Y., Liu, X., Zhang, S., Lin, Y., Yang, J., & Zhang, C. (2009). MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. Journal of Molecular and Cellular Cardiology, 47(1), 5–14.

    Article  CAS  PubMed  Google Scholar 

  22. Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460(7256), 705–710.

    CAS  PubMed  Google Scholar 

  23. Matsumoto, T., & Hwang, P. M. (2007). Resizing the genomic regulation of restenosis. Circulation Research, 100(11), 1537–1539.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, C. (2008). MicroRNAs: role in cardiovascular biology and disease. Clinical Science, 114(12), 699–706.

    Article  CAS  PubMed  Google Scholar 

  25. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.

    Article  CAS  PubMed  Google Scholar 

  26. van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18255–18260.

    Article  PubMed  Google Scholar 

  27. Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.

    Article  PubMed  Google Scholar 

  28. Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42(6), 1137–1141.

    Article  CAS  PubMed  Google Scholar 

  29. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984.

    Article  CAS  PubMed  Google Scholar 

  30. Thum, T., Galuppo, P., Wolf, C., Fiedler, J., Kneitz, S., van Laake, L. W., et al. (2007). MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation, 116(3), 258–267.

    Article  CAS  PubMed  Google Scholar 

  31. Dong, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., et al. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. Journal of Biological Chemistry, 284(43), 29514–29525.

    Article  CAS  PubMed  Google Scholar 

  32. Sayed, D., Rane, S., Lypowy, J., He, M., Chen, I. Y., Vashistha, H., et al. (2008). MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Molecular Biology of the Cell, 19(8), 3272–3282.

    Article  CAS  PubMed  Google Scholar 

  33. van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13027–13032.

    Article  PubMed  Google Scholar 

  34. Yin, C., Salloum, F. N., & Kukreja, R. C. (2009). A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circulation Research, 104(5), 572–575.

    Article  CAS  PubMed  Google Scholar 

  35. Yin, C., Wang, X., & Kukreja, R. C. (2008). Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia–reperfusion in mice. FEBS Letters, 582(30), 4137–4142.

    Article  CAS  PubMed  Google Scholar 

  36. Kota, J., Chivukula, R. R., O'Donnell, K. A., Wentzel, E. A., Montgomery, C. L., Hwang, H. W., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6), 1005–1017.

    Article  CAS  PubMed  Google Scholar 

  37. Schulz, R. (2007). Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annual Review of Pharmacology and Toxicology, 47, 211–242.

    Article  CAS  PubMed  Google Scholar 

  38. Viappiani, S., Nicolescu, A. C., Holt, A., Sawicki, G., Crawford, B. D., León, H., et al. (2009). Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochemical Pharmacology, 77(5), 826–834.

    Article  CAS  PubMed  Google Scholar 

  39. Guo, H., Shi, Y., Liu, L., Sun, A., Xu, F., & Chi, J. (2009). Rosuvastatin inhibits MMP-2 expression and limits the progression of atherosclerosis in LDLR-deficient mice. Archives of Medical Research, 40(5), 345–351.

    Article  CAS  PubMed  Google Scholar 

  40. Thompson, M., & Cockerill, G. (2006). Matrix metalloproteinase-2: the forgotten enzyme in aneurysm pathogenesis. Annals of the New York Academy of Sciences, 1085, 170–174.

    Article  CAS  PubMed  Google Scholar 

  41. Pepper, M. S. (2001). Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 7, 1104–1117.

    Article  Google Scholar 

  42. Ikeda, S., Kong, S. W., Lu, J., Bisping, E., Zhang, H., Allen, P. D., et al. (2007). Altered microRNA expression in human heart disease. Physiological Genomics, 31(3), 367–373.

    Article  CAS  PubMed  Google Scholar 

  43. Thum, T., Catalucci, D., & Bauersachs, J. (2008). MicroRNAs: novel regulators in cardiac development and disease. Cardiovascular Research, 79(4), 562–570.

    Article  CAS  PubMed  Google Scholar 

  44. Krutzfeldt, J., Poy, M. N., & Stoffel, M. (2006). Strategies to determine the biological function of microRNAs. Nature Genetics, 38, S14–19.

    Article  PubMed  Google Scholar 

  45. Cheng, A. M., Byrom, M. W., Shelton, J., & Ford, L. P. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Research, 33(4), 1290–1297.

    Article  CAS  PubMed  Google Scholar 

  46. Schroen, B., & Heymans, S. (2009). MicroRNAs and beyond: the heart reveals its treasures. Hypertension, 54(6), 1189–1194.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author's research was supported by a National Institutes of Health Grant (HL080133) and a grant from the American Heart Association (09GRNT2250567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Zhang, C. MicroRNA-21 in Cardiovascular Disease. J. of Cardiovasc. Trans. Res. 3, 251–255 (2010). https://doi.org/10.1007/s12265-010-9169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9169-7

Keywords

Navigation