Skip to main content
Log in

Abstract

MicroRNAs (miRNAs) are small and highly conserved non-coding RNA molecules that function to regulate gene expression. They play important roles in regulating cardiac physiological and pathological events such as hypertrophy, apoptosis, and heart failure. Induction of apoptosis in cardiomyocytes cannot be compensated by efficient cell proliferation, thereby leading to pathophysiological disorders. The miRNAs involved in cardiac apoptosis may provide a mechanism for the pathogenesis and treatment of heart diseases. This review summarizes the role of miRNAs in regulating cardiac apoptosis. In particular, it discusses the potential therapeutic approaches for apoptosis-related cardiac diseases by modulating miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen, J. F., Murchison, E. P., Tang, R., Callis, T. E., Tatsuguchi, M., Deng, Z., et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 105, 2111–2116.

    Article  CAS  PubMed  Google Scholar 

  2. da Costa Martins, P. A., Bourajjaj, M., Gladka, M., Kortland, M., van Oort, R. J., Pinto, Y. M., et al. (2008). Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation, 118, 1567–1576.

    Article  PubMed  Google Scholar 

  3. Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129, 303–317.

    Article  CAS  PubMed  Google Scholar 

  4. Kang, P. M., & Izumo, S. (2000). Apoptosis and heart failure: A critical review of the literature. Circulation Research, 86, 1107–1113.

    CAS  PubMed  Google Scholar 

  5. Elsasser, A., Suzuki, K., & Schaper, J. (2000). Unresolved issues regarding the role of apoptosis in the pathogenesis of ischemic injury and heart failure. Journal of Molecular and Cellular Cardiology, 32, 711–724.

    Article  CAS  PubMed  Google Scholar 

  6. Barlucchi, L., Leri, A., Dostal, D. E., Fiordaliso, F., Tada, H., Hintze, T. H., et al. (2001). Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure. Circulation Research, 88, 298–304.

    CAS  PubMed  Google Scholar 

  7. Crow, M. T., Mani, K., Nam, Y. J., & Kitsis, R. N. (2004). The mitochondrial death pathway and cardiac myocyte apoptosis. Circulation Research, 95, 957–970.

    Article  CAS  PubMed  Google Scholar 

  8. Kitsis, R. N., & Mann, D. L. (2005). Apoptosis and the heart: A decade of progress. Journal of Molecular and Cellular Cardiology, 38, 1–2.

    Article  CAS  PubMed  Google Scholar 

  9. Siwik, D. A., Tzortzis, J. D., Pimental, D. R., Chang, D. L., Pagano, P. J., Singh, K., et al. (1999). Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circulation Research, 85, 147–153.

    CAS  PubMed  Google Scholar 

  10. Kwon, S. H., Pimentel, D. R., Remondino, A., Sawyer, D. B., & Colucci, W. S. (2003). H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. Journal of Molecular and Cellular Cardiology, 35, 615–621.

    Article  CAS  PubMed  Google Scholar 

  11. Krichevsky, A. M., & Gabriely, G. (2009). miR-21: A small multi-faceted RNA. Journal of Cellular and Molecular Medicine, 13, 39–53.

    Article  CAS  PubMed  Google Scholar 

  12. Schickel, R., Boyerinas, B., Park, S. M., & Peter, M. E. (2008). MicroRNAs: Key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene, 27, 5959–5974.

    Article  CAS  PubMed  Google Scholar 

  13. Mendell, J. T. (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell, 133, 217–222.

    Article  CAS  PubMed  Google Scholar 

  14. He, X., He, L., & Hannon, G. J. (2007). The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Research, 67, 11099–11101.

    Article  CAS  PubMed  Google Scholar 

  15. Saydam, O., Shen, Y., Wurdinger, T., Senol, O., Boke, E., James, M. F., et al. (2009). Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Molecular and Cellular Biology, 29, 5923–5940.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, K. H., Chen, Y. L., Yeh, S. D., Hsiao, M., Lin, J. T., Goan, Y. G., et al. (2009). MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene, 28, 3360–3370.

    Article  CAS  PubMed  Google Scholar 

  17. Fornari, F., Gramantieri, L., Giovannini, C., Veronese, A., Ferracin, M., Sabbioni, S., et al. (2009). MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Research, 69, 5761–5767.

    Article  CAS  PubMed  Google Scholar 

  18. Chhabra, R., Adlakha, Y. K., Hariharan, M., Scaria, V., & Saini, N. (2009). Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS ONE, 4, e5848.

    Article  PubMed  Google Scholar 

  19. Noonan, E. J., Place, R. F., Pookot, D., Basak, S., Whitson, J. M., Hirata, H., et al. (2009). miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene, 28, 1714–1724.

    Article  CAS  PubMed  Google Scholar 

  20. Su, H., Yang, J. R., Xu, T., Huang, J., Xu, L., Yuan, Y., et al. (2009). MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Research, 69, 1135–1142.

    Article  CAS  PubMed  Google Scholar 

  21. Garzon, R., Heaphy, C. E., Havelange, V., Fabbri, M., Volinia, S., Tsao, T., et al. (2009). MicroRNA 29b functions in acute myeloid leukemia. Blood, 114(26), 5331–5341.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, P., Qian, L., Kozopas, K. M., & Craig, R. W. (1997). Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood, 89, 630–643.

    CAS  PubMed  Google Scholar 

  23. Dzhagalov, I., Dunkle, A., & He, Y. W. (2008). The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. Journal of Immunology, 181, 521–528.

    CAS  Google Scholar 

  24. Yamakuchi, M., Ferlito, M., & Lowenstein, C. J. (2008). miR-34a repression of SIRT1 regulates apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13421–13426.

    Article  CAS  PubMed  Google Scholar 

  25. Song, G., Zhang, Y., & Wang, L. (2009). MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. Journal of Biological Chemistry, 284, 31921–31927.

    Article  CAS  PubMed  Google Scholar 

  26. Yan, H. L., Xue, G., Mei, Q., Wang, Y. Z., Ding, F. X., Liu, M. F., et al. (2009). Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO Journal, 28, 2719–2732.

    Article  CAS  PubMed  Google Scholar 

  27. Le, M. T., Teh, C., Shyh-Chang, N., Xie, H., Zhou, B., Korzh, V., et al. (2009). MicroRNA-125b is a novel negative regulator of p53. Genes and Development, 23, 862–876.

    Article  CAS  PubMed  Google Scholar 

  28. Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., et al. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science, 120, 3045–3052.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng, Y., Liu, X., Zhang, S., Lin, Y., Yang, J., & Zhang, C. (2009). MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. Journal of Molecular and Cellular Cardiology, 47, 5–14.

    Article  CAS  PubMed  Google Scholar 

  30. Li, J., Donath, S., Li, Y., Qin, D., Prabhakar, B. S., & Li, P. (2010). miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 6, e1000795.

    Article  PubMed  Google Scholar 

  31. Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism, 3, 87–98.

    Article  CAS  PubMed  Google Scholar 

  32. Rane, S., He, M., Sayed, D., Vashistha, H., Malhotra, A., Sadoshima, J., et al. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circulation Research, 104, 879–886.

    Article  CAS  PubMed  Google Scholar 

  33. Ren, X. P., Wu, J., Wang, X., Sartor, M. A., Qian, J., Jones, K., et al. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation, 119, 2357–2366.

    Article  CAS  PubMed  Google Scholar 

  34. Long, X., Boluyt, M. O., Hipolito, M. L., Lundberg, M. S., Zheng, J. S., O'Neill, L., et al. (1997). p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. Journal of Clinical Investigation, 99, 2635–2643.

    Article  CAS  PubMed  Google Scholar 

  35. Nam, Y. J., Mani, K., Wu, L., Peng, C. F., Calvert, J. W., Foo, R. S., et al. (2007). The apoptosis inhibitor ARC undergoes ubiquitin-proteasomal-mediated degradation in response to death stimuli: identification of a degradation-resistant mutant. Journal of Biological Chemistry, 282, 5522–5528.

    Article  CAS  PubMed  Google Scholar 

  36. Yurkova, N., Shaw, J., Blackie, K., Weidman, D., Jayas, R., Flynn, B., et al. (2008). The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circulation Research, 102, 472–479.

    Article  CAS  PubMed  Google Scholar 

  37. Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. New England Journal of Medicine, 341, 1276–1283.

    Article  CAS  PubMed  Google Scholar 

  38. Frey, N., & Olson, E. N. (2003). Cardiac hypertrophy: the good, the bad, and the ugly. Annual Review of Physiology, 65, 45–79.

    Article  CAS  PubMed  Google Scholar 

  39. Clerk, A., Cullingford, T. E., Fuller, S. J., Giraldo, A., Markou, T., Pikkarainen, S., et al. (2007). Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. Journal of Cellular Physiology, 212, 311–322.

    Article  CAS  PubMed  Google Scholar 

  40. Foo, R. S., Mani, K., & Kitsis, R. (2005). Death begets failure in the heart. Journal of Clinical Investigation, 115, 565–571.

    CAS  PubMed  Google Scholar 

  41. Nadal-Ginard, B., Kajstura, J., Leri, A., & Anversa, P. (2003). Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circulation Research, 92, 139–150.

    Article  CAS  PubMed  Google Scholar 

  42. Kass, D. A., Bronzwaer, J. G., & Paulus, W. J. (2004). What mechanisms underlie diastolic dysfunction in heart failure? Circulation Research, 94, 1533–1542.

    Article  CAS  PubMed  Google Scholar 

  43. van Rooij, E., & Olson, E. N. (2007). MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. Journal of Clinical Investigation, 117, 2369–2376.

    Article  PubMed  Google Scholar 

  44. Callis, T. E., & Wang, D. Z. (2008). Taking microRNAs to heart. Trends in Molecular Medicine, 14, 254–260.

    Article  CAS  PubMed  Google Scholar 

  45. Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.

    Article  CAS  PubMed  Google Scholar 

  46. van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316, 575–579.

    Article  PubMed  Google Scholar 

  47. Callis, T. E., Pandya, K., Seok, H. Y., Tang, R. H., Tatsuguchi, M., Huang, Z. P., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. Journal of Clinical Investigation, 119, 2772–2786.

    Article  CAS  PubMed  Google Scholar 

  48. van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103, 18255–18260.

    Article  PubMed  Google Scholar 

  49. Ikeda, S., He, A., Kong, S. W., Lu, J., Bejar, R., Bodyak, N., et al. (2009). MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Molecular and Cellular Biology, 29, 2193–2204.

    Article  CAS  PubMed  Google Scholar 

  50. Arya, R., Kedar, V., Hwang, J. R., McDonough, H., Li, H. H., Taylor, J., et al. (2004). Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. Journal of Cell Biology, 167, 1147–1159.

    Article  CAS  PubMed  Google Scholar 

  51. Lin, Z., Murtaza, I., Wang, K., Jiao, J., Gao, J., & Li, P. F. (2009). miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 106, 12103–12108.

    Article  CAS  PubMed  Google Scholar 

  52. Ding, B., Abe, J., Wei, H., Huang, Q., Walsh, R. A., Molina, C. A., et al. (2005). Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation, 111, 2469–2476.

    Article  CAS  PubMed  Google Scholar 

  53. Rao, P. K., Toyama, Y., Chiang, H. R., Gupta, S., Bauer, M., Medvid, R., et al. (2009). Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circulation Research, 105, 585–594.

    Article  CAS  PubMed  Google Scholar 

  54. Sucharov, C., Bristow, M. R., & Port, J. D. (2008). miRNA expression in the failing human heart: Functional correlates. Journal of Molecular and Cellular Cardiology, 45, 185–192.

    Article  CAS  PubMed  Google Scholar 

  55. Shiomi, T., Tsutsui, H., Matsusaka, H., Murakami, K., Hayashidani, S., Ikeuchi, M., et al. (2004). Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation, 109, 544–549.

    Article  CAS  PubMed  Google Scholar 

  56. Sun, M., Dawood, F., Wen, W. H., Chen, M., Dixon, I., Kirshenbaum, L. A., et al. (2004). Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation, 110, 3221–3228.

    Article  CAS  PubMed  Google Scholar 

  57. Dong, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., et al. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. Journal of Biological Chemistry, 284, 29514–29525.

    Article  CAS  PubMed  Google Scholar 

  58. van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13027–13032.

    Article  PubMed  Google Scholar 

  59. Bostjancic, E., Zidar, N., Stajer, D., & Glavac, D. (2009). MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology, 115, 163–169.

    Article  PubMed  Google Scholar 

  60. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984.

    Article  CAS  PubMed  Google Scholar 

  61. McBride, H. M., Neuspiel, M., & Wasiak, S. (2006). Mitochondria: More than just a powerhouse. Current Biology, 16, R551–R560.

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka, A., & Youle, R. J. (2008). A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis. Molecular Cell, 29, 409–410.

    Article  CAS  PubMed  Google Scholar 

  63. Cassidy-Stone, A., Chipuk, J. E., Ingerman, E., Song, C., Yoo, C., Kuwana, T., et al. (2008). Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Develpmental Cell, 14, 193–204.

    Article  CAS  Google Scholar 

  64. Bras, M., Yuste, V. J., Roue, G., Barbier, S., Sancho, P., Virely, C., et al. (2007). Drp1 mediates caspase-independent type III cell death in normal and leukemic cells. Molecular and Cellular Biology, 27, 7073–7088.

    Article  CAS  PubMed  Google Scholar 

  65. Wasiak, S., Zunino, R., & McBride, H. M. (2007). Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. Journal of Cell Biology, 177, 439–450.

    Article  CAS  PubMed  Google Scholar 

  66. Kim, H. W., Haider, H. K., Jiang, S., & Ashraf, M. (2009). Ischemic preconditioning augments survival of stem cells via MIR-210 expression by targeting caspase-8 associated protein 2. J Biol Chem, 284(48), 33161–33168.

    Article  PubMed  Google Scholar 

  67. Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324, 1710–1713.

    Article  CAS  PubMed  Google Scholar 

  68. Soifer, H. S., Rossi, J. J., & Saetrom, P. (2007). MicroRNAs in disease and potential therapeutic applications. Molecular Therapy, 15, 2070–2079.

    Article  CAS  PubMed  Google Scholar 

  69. Krutzfeldt, J., Kuwajima, S., Braich, R., Rajeev, K. G., Pena, J., Tuschl, T., et al. (2007). Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Research, 35, 2885–2892.

    Article  CAS  PubMed  Google Scholar 

  70. Morton, S. U., Scherz, P. J., Cordes, K. R., Ivey, K. N., Stainier, D. Y., & Srivastava, D. (2008). microRNA-138 modulates cardiac patterning during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 105, 17830–17835.

    Article  CAS  PubMed  Google Scholar 

  71. Cordes, K. R., & Srivastava, D. (2009). MicroRNA regulation of cardiovascular development. Circulation Research, 104, 724–732.

    Article  CAS  PubMed  Google Scholar 

  72. Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460, 705–710.

    CAS  PubMed  Google Scholar 

  73. Suarez, Y., Fernandez-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100, 1164–1173.

    Article  CAS  PubMed  Google Scholar 

  74. Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., et al. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 108, 3068–3071.

    Article  CAS  PubMed  Google Scholar 

  75. Barringhaus, K. G., & Zamore, P. D. (2009). MicroRNAs: regulating a change of heart. Circulation, 119, 2217–2224.

    Article  PubMed  Google Scholar 

  76. Latronico, M. V., & Condorelli, G. (2009). MicroRNAs and cardiac pathology. Nature Reviews Cardiology, 6, 419–429.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We apologize to all colleagues whose work could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peifeng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P. MicroRNAs in Cardiac Apoptosis. J. of Cardiovasc. Trans. Res. 3, 219–224 (2010). https://doi.org/10.1007/s12265-010-9175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9175-9

Keywords

Navigation