Skip to main content
Log in

Numerical Model of Full-Cardiac Cycle Hemodynamics in a Total Artificial Heart and the Effect of Its Size on Platelet Activation

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The SynCardia total artificial heart (TAH) is the only Food and Drug Administration (FDA) approved device for replacing hearts in patients with congestive heart failure. It pumps blood via pneumatically driven diaphragms and controls the flow with mechanical valves. While it has been successfully implanted in more than 1300 patients, its size precludes implantation in smaller patients. This study’s aim was to evaluate the viability of scaled-down TAHs by quantifying thrombogenic potentials from flow patterns. Simulations of systole were first conducted with stationary valves, followed by an advanced full-cardiac cycle model with moving valves. All the models included deforming diaphragms and platelet suspension in the blood flow. Flow stress accumulations were computed for the platelet trajectories and thrombogenic potentials were assessed. The simulations successfully captured complex flow patterns during various phases of the cardiac cycle. Increased stress accumulations, but within the safety margin of acceptable thrombogenicity, were found in smaller TAHs, indicating that they are clinically viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Copeland, J. G., Smith, R. G., Arabia, F. A., Nolan, P. E., Sethi, G. K., Tsau, P. H., McClellan, D., & Slepian, M. J. (2004). Cardiac replacement with a total artificial heart as a bridge to transplantation. The New England Journal of Medicine, 351(9), 859–867. doi:10.1056/NEJMoa040186.

    Article  CAS  PubMed  Google Scholar 

  2. Slepian, M. J., Smith, R. G., & Copeland, J. C. (2006). The SynCardia CardioWest total artificial heart. In K. L. Baughman & W. A. Baumgartner (Eds.), Treatment of advanced heart disease, vol 56. Fundamental and clinical cardiology series (pp. 473–490). New York: Taylor & Francis Group.

    Google Scholar 

  3. Frazier, O. H., & Cohn, W. E. (2012). Continuous-flow total heart replacement device implanted in a 55-year-old man with end-stage heart failure and severe amyloidosis. Texas Heart Institute journal / from the Texas Heart Institute of St Luke’s Episcopal Hospital, Texas Children’s Hospital, 39(4), 542–546.

    CAS  PubMed Central  Google Scholar 

  4. Slepian, M. J., Alemu, Y., Girdhar, G., Soares, J. S., Smith, R. G., Einav, S., & Bluestein, D. (2013). The Syncardia total artificial heart: in vivo, in vitro, and computational modeling studies. Journal of Biomechanics, 46(2), 266–275. doi:10.1016/j.jbiomech.2012.11.032.

  5. Platis, A., & Larson, D. F. (2009). CardioWest temporary total artificial heart. Perfusion, 24(5), 341–346. doi:10.1177/0267659109351330.

    Article  PubMed  Google Scholar 

  6. Girdhar, G., Xenos, M., Alemu, Y., Chiu, W. C., Lynch, B. E., Jesty, J., Einav, S., Slepian, M. J., & Bluestein, D. (2012). Device thrombogenicity emulation: a novel method for optimizing mechanical circulatory support device thromboresistance. PLoS One, 7(3), e32463. doi:10.1371/journal.pone.0032463.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Xenos, M., Girdhar, G., Alemu, Y., Jesty, J., Slepian, M., Einav, S., & Bluestein, D. (2010). Device Thrombogenicity Emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. Journal of Biomechanics, 43(12), 2400–2409. doi:10.1016/j.jbiomech.2010.04.020.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kroll, M. H., Hellums, J. D., McIntire, L. V., Schafer, A. I., & Moake, J. L. (1996). Platelets and shear stress. Blood, 88(5), 1525–1541.

    CAS  PubMed  Google Scholar 

  9. Leshnower, B. G., Smith, R. G., Ohara, M. L., Woo, J., Pochettino, A., Morris, R. J., Gardner, T. J., Slepian, M. J., Copeland, J. G., Acker, M. A. (2007). Is the total artificial heart superior to BIVAD therapy as a method of bridging patients to heart transplantation? Paper presented at the 43rd Annual meeting of the Society of Thoracic Surgeons, San Diego, CA, January 29–31.

  10. Copeland, J. G., Copeland, H., Gustafson, M., Mineburg, N., Covington, D., Smith, R. G., & Friedman, M. (2012). Experience with more than 100 total artificial heart implants. The Journal of Thoracic and Cardiovascular Surgery, 143(3), 727–734. doi:10.1016/j.jtcvs.2011.12.002.

    Article  PubMed  Google Scholar 

  11. Richards, K. E., Deserranno, D., Donal, E., Greenberg, N. L., Thomas, J. D., & Garcia, M. J. (2004). Influence of structural geometry on the severity of bicuspid aortic stenosis. American Journal of Physiology. Heart and Circulatory Physiology, 287(3), H1410–H1416. doi:10.1152/ajpheart.00264.2003.

    Article  CAS  PubMed  Google Scholar 

  12. Alemu, Y., & Bluestein, D. (2007). Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artificial Organs, 31(9), 677–688. doi:10.1111/j.1525-1594.2007.00446.x.

    Article  PubMed  Google Scholar 

  13. Borazjani, I., Ge, L., & Sotiropoulos, F. (2010). High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Annals of Biomedical Engineering, 38(2), 326–344. doi:10.1007/s10439-009-9807-x.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hong, T., & Kim, C. N. (2011). A numerical analysis of the blood flow around the bileaflet mechanical heart valves with different rotational implantation angles. Journal of Hydrodynamics, 23(5), 607–614. doi:10.1016/S1001-6058(10)60156-4.

    Article  Google Scholar 

  15. Dumont, K., Vierendeels, J., Kaminsky, R., van Nooten, G., Verdonck, P., & Bluestein, D. (2007). Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. Journal of Biomechanical Engineering, 129(4), 558–565. doi:10.1115/1.2746378.

    Article  PubMed  Google Scholar 

  16. Hose, D. R., Narracott, A. J., Penrose, J. M., Baguley, D., Jones, I. P., & Lawford, P. V. (2006). Fundamental mechanics of aortic heart valve closure. Journal of Biomechanics, 39(5), 958–967. doi:10.1016/j.jbiomech.2005.01.029.

    Article  PubMed  Google Scholar 

  17. Dasi, L. P., Ge, L., Simon, H. A., Sotiropoulos, F., & Yoganathan, A. P. (2007). Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Physics of Fluids, 19(6), 067105. doi:10.1063/1.2743261.

    Article  Google Scholar 

  18. Chiu, W. C., Slepian, M. J., & Bluestein, D. (2014). Thrombus formation patterns in the HeartMate II ventricular assist device: clinical observations can be predicted by numerical simulations. ASAIO Journal, 60(2), 237–240. doi:10.1097/MAT.0000000000000034.

    Article  PubMed  Google Scholar 

  19. Zhang, J., Zhang, P., Fraser, K. H., Griffith, B. P., & Wu, Z. J. (2013). Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device. Artificial Organs, 37(4), 380–389. doi:10.1111/j.1525-1594.2012.01576.x.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sonntag, S. J., Kaufmann, T. A. S., Busen, M. R., Laumen, M., Linde, T., Schmitz-Rode, T., & Steinseifer, U. (2013). Simulation of a pulsatile total artificial heart: development of a partitioned Fluid Structure Interaction model. Journal of Fluid and Structures, 38, 187–204. doi:10.1016/j.jfluidstructs.2012.11.011.

    Article  Google Scholar 

  21. Penrose, J. M. T., & Staples, C. J. (2002). Implicit fluid-structure coupling for simulation of cardiovascular problems. International Journal for Numerical Methods in Fluids, 40(3–4), 467–478. doi:10.1002/Fld.306.

    Article  Google Scholar 

  22. Avrahami, I., Rosenfeld, M., Raz, S., & Einav, S. (2006). Numerical model of flow in a sac-type ventricular assist device. Artificial Organs, 30(7), 529–538. doi:10.1111/j.1525-1594.2006.00255.x.

    Article  PubMed  Google Scholar 

  23. Medvitz, R. B., Reddy, V., Deutsch, S., Manning, K. B., & Paterson, E. G. (2009). Validation of a CFD methodology for positive displacement LVAD analysis using PIV data. Journal of Biomechanical Engineering, 131(11), 111009. doi:10.1115/1.4000116.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Topper, S. R., Navitsky, M. A., Medvitz, R. B., Paterson, E. G., Siedlecki, C. A., Slattery, M. J., Deutsch, S., Rosenberg, G., & Manning, K. B. (2014). The use of fluid mechanics to predict regions of microscopic thrombus formation in pulsatile VADs. Cardiovascular Engineering and Technology, 5(1), 54–69. doi:10.1007/s13239-014-0174-x.

    Article  PubMed  Google Scholar 

  25. Govindarajan, V., Udaykumar, H. S., Herbertson, L. H., Deutsch, S., Manning, K. B., & Chandran, K. B. (2010). Two-dimensional FSI simulation of closing dynamics of a tilting disk mechanical heart valve. Journal of Medical Devices, 4(1), 011001. doi:10.1115/1.4000876.

    Article  Google Scholar 

  26. Pelliccioni, O., Cerrolaza, M., & Herrera, M. (2007). Lattice Boltzmann dynamic simulation of a mechanical heart valve device. Mathematics and Computers in Simulation, 75(1–2), 1–14. doi:10.1016/j.matcom.2006.08.005.

    Article  Google Scholar 

  27. Marom, G. (2014). Numerical methods for fluid–structure interaction models of aortic valves. Archives of Computational Methods in Engineering 1–26. doi:10.1007/s11831-014-9133-9.

  28. Donovan, F. M. (1975). Design of a hydraulic analog of the circulatory system for evaluating artificial hearts. Biomaterials, Medical Devices, and Artificial Organs, 3(4), 439–449. doi:10.3109/10731197509118635.

    PubMed  Google Scholar 

  29. Yoganathan, A. P., Chandran, K. B., & Sotiropoulos, F. (2005). Flow in prosthetic heart valves: state-of-the-art and future directions. Annals of Biomedical Engineering, 33(12), 1689–1694. doi:10.1007/s10439-005-8759-z.

    Article  PubMed  Google Scholar 

  30. Fraser, K. H., Zhang, T., Taskin, M. E., Griffith, B. P., & Wu, Z. J. (2012). A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. Journal of Biomechanical Engineering, 134(8), 081002. doi:10.1115/1.4007092.

    Article  PubMed  Google Scholar 

  31. Nobili, M., Morbiducci, U., Ponzini, R., Gaudio, C. D., Balducci, A., Grigioni, M., Montevecchi, F. M., & Redaelli, A. (2008). Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. Journal of Biomechanics, 41, 2539–2550. doi:10.1016/j.jbiomech.2008.05.004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Matthew Pollack from Boston University for his help in reconstructing the geometry. We also thank Doug Nutter and Richard Smith for information on TAH engineering drawings and operating conditions. The software was provided by an ANSYS Academic Partnership with Stony Brook University.

Conflict of Interest

Dr. Slepian declares participation in review activities for SynCardia Inc. All the other authors declare no conflict of interest. No human or animal studies were carried out by the authors for this article.

Sources of Funding

This study was funded by grants from the National Institute of Health: National Institute of Biomedical Imaging and Bioengineering Quantum Award: Implementation Phase II-U01 EB012487-04 (D.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Bluestein.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 193154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marom, G., Chiu, WC., Crosby, J.R. et al. Numerical Model of Full-Cardiac Cycle Hemodynamics in a Total Artificial Heart and the Effect of Its Size on Platelet Activation. J. of Cardiovasc. Trans. Res. 7, 788–796 (2014). https://doi.org/10.1007/s12265-014-9596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9596-y

Keywords

Navigation