Skip to main content
Log in

Induced pluripotent stem cell research: A revolutionary approach to face the challenges in drug screening

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Discovery of induced pluripotent stem (iPS) cells in 2006 provided a new path for cell transplantation and drug screening. The iPS cells are stem cells derived from somatic cells that have been genetically reprogrammed into a pluripotent state. Similar to embryonic stem (ES) cells, iPS cells are capable of differentiating into three germ layers, eliminating some of the hurdles in ES cell technology. Further progress and advances in iPS cell technology, from viral to non-viral systems and from integrating to non-integrating approaches of foreign genes into the host genome, have enhanced the existing technology, making it more feasible for clinical applications. In particular, advances in iPS cell technology should enable autologous transplantation and more efficient drug discovery. Cell transplantation may lead to improved treatments for various diseases, including neurological, endocrine, and hepatic diseases. In studies on drug discovery, iPS cells generated from patient-derived somatic cells could be differentiated into specific cells expressing specific phenotypes, which could then be used as disease models. Thus, iPS cells can be helpful in understanding the mechanisms of disease progression and in cell-based efficient drug screening. Here, we summarize the history and progress of iPS cell technology, provide support for the growing interest in iPS cell applications with emphasis on practical uses in cell-based drug screening, and discuss some challenges faced in the use of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ai]Amabile, G. and Meissner, A., Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol. Med., 15, 59–68 (2009).

    Article  CAS  Google Scholar 

  • Bar-Nur, O., Russ, H. A., Efrat, S., and Benvenisty, N., Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet Beta cells. Cell Stem Cell, 9, 17–23 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Blelloch, R., Venere, M., Yen, J., and Ramalho-Santos, M., Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell, 1, 245–247 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Bosnali, M. and Edenhofer, F., Generation of transducible versions of transcription factors Oct4 and Sox2. Biol. Chem., 389, 851–861 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Boyd, A. S. and Fairchild, P. J., Approaches for immunological tolerance induction to stem cell-derived cell replacement therapies. Expert Rev. Clin. Immunol., 6, 435–448 (2010).

    Article  PubMed  Google Scholar 

  • Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., and Jaenisch, R., Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2, 151–159 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., Li, Y., Mu, Y., Chen, G., Yu, D., McCarthy, S., Sebat, J., and Gage, F. H., Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473, 221–225 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Briggs, R. and King, T. J., Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc. Natl. Acad. Sci. U. S. A., 38, 455–463 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Carvajal-Vergara, X., Sevilla, A., D’souza, S. L., Ang, Y. S., Schaniel, C., Lee, D. F., Yang, L., Kaplan, A. D., Adler, E. D., Rozov, R., Ge, Y., Cohen, N., Edelmann, L. J., Chang, B., Waghray, A., Su, J., Pardo, S., Lichtenbelt, K. D., Tartaglia, M., Gelb, B. D., and Lemischka, I. R., Patientspecific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465, 808–812 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Charron, D., Suberbielle-Boissel, C., and Al-Daccak, R., Immunogenicity and allogenicity: a challenge of stem cell therapy. J. Cardiovasc. Transl. Res., 2, 130–138 (2009).

    Article  PubMed  Google Scholar 

  • Chen, T., Shen, L., Yu, J., Wan, H., Guo, A., Chen, J., Long, Y., Zhao, J., and Pei, G., Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell, 10, 908–911 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., Wang, S., Morton, C. C., McMahon, A. P., Powers, D., and Melton, D. A., Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med., 350, 1353–1356 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. L., Weintraub, H., and Lassar, A. B., Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51, 987–1000 (1987).

    Article  PubMed  CAS  Google Scholar 

  • DiBernardo, A. B. and Cudkowicz, M. E., Translating preclinical insights into effective human trials in ALS. Biochim. Biophys. Acta, 1762, 1139–1149 (2006).

    PubMed  CAS  Google Scholar 

  • Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., Croft, G. F., Saphier, G., Leibel, R., Goland, R., Wichterle, H., Henderson, C. E., and Eggan, K., Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321, 1218–1221 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Ebert, A. D., Yu, J., Rose, F. F., Jr., Mattis, V. B., Lorson, C. L., Thomson, J. A., and Svendsen, C. N., Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457, 277–280 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J. and Bhatia, M., iPSC technology: platform for drug discovery. Point. Clin. Pharmacol. Ther., 89, 639–641 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. J. and Kaufman, M. H., Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 85, 348–362 (2009).

    Article  PubMed  CAS  Google Scholar 

  • George, R. P. and Gomez-Lobo, A., The moral status of the human embryo. Perspect. Biol. Med., 48, 201–210 (2005).

    Article  PubMed  Google Scholar 

  • Gersting, S. W., Schillinger, U., Lausier, J., Nicklaus, P., Rudolph, C., Plank, C., Reinhardt, D., and Rosenecker, J., Gene delivery to respiratory epithelial cells by magnetofection. J. Gene Med., 6, 913–922 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Ghodsizadeh, A., Taei, A., Totonchi, M., Seifinejad, A., Gourabi, H., Pournasr, B., Aghdami, N., Malekzadeh, R., Almadani, N., Salekdeh, G. H., and Baharvand, H., Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev., 6, 622–632 (2010).

    Article  PubMed  Google Scholar 

  • Gore, A., Li, Z., Fung, H. L., Young, J. E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M. A., Kiskinis, E., Lee, J. H., Loh, Y. H., Manos, P. D., Montserrat, N., Panopoulos, A. D., Ruiz, S., Wilbert, M. L., Yu, J., Kirkness, E. F., Izpisua Belmonte, J. C., Rossi, D. J., Thomson, J. A., Eggan, K., Daley, G. Q., Goldstein, L. S., and Zhang, K., Somatic coding mutations in human induced pluripotent stem cells. Nature, 471, 63–67 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Green, R. M., Benefiting from ‘evil’: an incipient moral problem in human stem cell research. Bioethics, 16, 544–556 (2002).

    Article  PubMed  Google Scholar 

  • Gurdon, J. B., The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol., 10, 622–640 (1962).

    PubMed  CAS  Google Scholar 

  • Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., Beard, C., Brambrink, T., Wu, L. C., Townes, T. M., and Jaenisch, R., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318, 1920–1923 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Hargus, G., Cooper, O., Deleidi, M., Levy, A., Lee, K., Marlow, E., Yow, A., Soldner, F., Hockemeyer, D., Hallett, P. J., Osborn, T., Jaenisch, R., and Isacson, O., Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl. Acad. Sci. U. S. A., 107, 15921–15926 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Hotta, A., Cheung, A. Y., Farra, N., Vijayaragavan, K., Seguin, C. A., Draper, J. S., Pasceri, P., Maksakova, I. A., Mager, D. L., Rossant, J., Bhatia, M., and Ellis, J., Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods, 6, 370–376 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., and Melton, D. A., Induction of pluripotent stem cells by defined factors is greatly improved by smallmolecule compounds. Nat. Biotechnol., 26, 795–797 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Hussein, S.M., Batada, N.M., Vuoristo, S., Ching, R.W., Autio, R., Narva, E., Ng, S., Sourour, M., Hamalainen, R., Olsson, C., Lundin, K., Mikkola, M., Trokovic, R., Peitz, M., Brustle, O., Jones, D.P., Alitalo, K., Lahesmaa, R., Nagy, A., Otonkoski, T., Copy number variation and selection during reprogramming to pluripotency. Nature, 471, 58–64 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., Feldman, O., Gepstein, A., Arbel, G., Hammerman, H., Boulos, M., and Gepstein, L., Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471, 225–229 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Jia, F., Wilson, K. D., Sun, N., Gupta, D. M., Huang, M., Li, Z., Panetta, N. J., Chen, Z. Y., Robbins, R. C., Kay, M. A., Longaker, M. T., and Wu, J. C., A nonviral minicircle vector for deriving human iPS cells. Nat. Methods, 7, 197–199 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., and Woltjen, K., Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458, 771–775 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Keller, G., Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev., 19, 1129–1155 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, S., Yang, E., Cha, K. Y., Lanza, R., and Kim, K. S., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M. J., Ji, H., Ehrlich, L. I., Yabuuchi, A., Takeuchi, A., Cunniff, K. C., Hongguang, H., McKinney-Freeman, S., Naveiras, O., Yoon, T. J., Irizarry, R. A., Jung, N., Seita, J., Hanna, J., Murakami, P., Jaenisch, R., Weissleder, R., Orkin, S. H., Weissman, I. L., Feinberg, A. P., and Daley, G. Q., Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285–290 (2011).

    Article  CAS  Google Scholar 

  • King, T. J., and Briggs, R., Changes in the nuclei of differentiating gastrula cells, as demonstrated by nuclear transplantation. Proc. Natl. Acad. Sci. U. S. A., 41, 321–325 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Kiskinis, E. and Eggan, K., Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest., 120, 51–59 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Kleinsmith, L. J. and Pierce, G. B., Jr., Multipotentiality of single embryonal carcinoma cells. Cancer Res., 24, 1544–1551 (1964).

    PubMed  CAS  Google Scholar 

  • Ku, S., Soragni, E., Campau, E., Thomas, E. A., Altun, G., Laurent, L. C., Loring, J. F., Napierala, M., and Gottesfeld, J. M., Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAATTC triplet repeat instability. Cell Stem Cell, 7, 631–637 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Laiosa, C. V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L., Graf, T., Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP < and PU.1 transcription factors. Immunity, 25, 731–744 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Laurent, L. C., Ulitsky, I., Slavin, I., Tran, H., Schork, A., Morey, R., Lynch, C., Harness, J. V., Lee, S., Barrero, M. J., Ku, S., Martynova, M., Semechkin, R., Galat, V., Gottesfeld, J., Izpisua Belmonte, J. C., Murry, C., Keirstead, H. S., Park, H. S., Schmidt, U., Laslett, A. L., Muller, F. J., Nievergelt, C. M., Shamir, R., and Loring, J. F., Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell, 8, 106–118 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. H., Kim, E. Y., Jeon, K., Tae, J. C., Lee, K. S., Kim, Y. O., Jeong, M. Y., Yun, C. W., Jeong, D. K., Cho, S. K., Kim, J. H., Lee, H. Y., Riu, K. Z., Cho, S. G., and Park, S. P., Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem Cells Dev., 17, 133–141 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. H., Kim, J. H., Lee, H. J., Jeon, K., Lim, H., Choi, H., Lee, E. R., Park, S. H., Park, J. Y., Hong, S., Kim, S., and Cho, S. G., The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials, 32, 6683–6691 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Lee, G., Papapetrou, E. P., Kim, H., Chambers, S. M., Tomishima, M. J., Fasano, C. A., Ganat, Y. M., Menon, J., Shimizu, F., Viale, A., Tabar, V., Sadelain, M., and Studer, L., Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461, 402–406 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Yang, C. S., Nakashima, K., and Rana, T. M., Small RNA-mediated regulation of iPS cell generation. EMBO J., 30, 823–834 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Lin, S. L., Chang, D. C., Chang-Lin, S., Lin, C. H., Wu, D. T., Chen, D. T., and Ying, S. Y., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 14, 2115–2124 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Lodi, D., Iannitti, T., and Palmieri, B., Stem cells in clinical practice: applications and warnings. J. Exp. Clin. Cancer Res., 30, 9 (2011).

    Article  PubMed  Google Scholar 

  • Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., Leibel, R. L., and Melton, D. A., Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl. Acad. Sci. U. S. A., 106, 15768–15773 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Maherali, N. and Hochedlinger, K., Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3, 595–605 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Mali, P., Ye, Z., Hommond, H. H., Yu, X., Lin, J., Chen, G., Zou, J., and Cheng, L., Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells, 26, 1998–2005 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., Chen, G., Gage, F. H., and Muotri, A. R., A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143, 527–539 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A., 78, 7634–7638 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., Nguemo, F., Menke, S., Haustein, M., Hescheler, J., Hasenfuss, G., and Martin, U., Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517 (2008).

    Article  PubMed  Google Scholar 

  • Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J. C., Yakir, B., Clark, A. T., Plath, K., Lowry, W. E., and Benvenisty, N., Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell, 7, 521–531 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., Nakagawa, M., Koyanagi, M., Tanabe, K., Ohnuki, M., Ogawa, D., Ikeda, E., Okano, H., and Yamanaka, S., Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol., 27, 743–745 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., Dorn, T., Goedel, A., Hohnke, C., Hofmann, F., Seyfarth, M., Sinnecker, D., Schomig, A., and Laugwitz, K. L., Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med., 363, 1397–1409 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol., 26, 101–106 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Narsinh, K. H., Jia, F., Robbins, R. C., Kay, M. A., Longaker, M. T., and Wu, J. C., Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat. Protoc., 6, 78–88 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Okita, K., Ichisaka, T., and Yamanaka, S., Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S., Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., and Daley, G. Q., Disease-specific induced pluripotent stem cells. Cell, 134, 877–886 (2008a).

    Article  PubMed  CAS  Google Scholar 

  • Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., and Daley, G. Q., Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451, 141–146 (2008b).

    Article  PubMed  CAS  Google Scholar 

  • Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., and Schacht, A. L., How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 9, 203–214 (2010).

    PubMed  CAS  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Rashid, S. T., Corbineau, S., Hannan, N., Marciniak, S. J., Miranda, E., Alexander, G., Huang-Doran, I., Griffin, J., Ahrlund-Richter, L., Skepper, J., Semple, R., Weber, A., Lomas, D. A., and Vallier, L., Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest., 120, 3127–3136 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Raya, A., Rodriguez-Piza, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M. J., Consiglio, A., Castella, M., Rio, P., Sleep, E., Gonzalez, F., Tiscornia, G., Garreta, E., Aasen, T., Veiga, A., Verma, I. M., Surralles, J., Bueren, J., and Izpisua Belmonte, J. C., Disease-corrected haemato poietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 460, 53–59 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Rubin, L. L., Stem cells and drug discovery: the beginning of a new era? Cell, 132, 549–552 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Saha, K., and Jaenisch, R., Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 5, 584–595 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Si-Tayeb, K., Noto, F. K., Nagaoka, M., Li, J., Battle, M. A., Duris, C., North, P. E., Dalton, S., and Duncan, S. A., Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 51, 297–305 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., Isacson, O., and Jaenisch, R., Parkinson’s disease patientderived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Somers, A., Jean, J. C., Sommer, C. A., Omari, A., Ford, C. C., Mills, J. A., Ying, L., Sommer, A. G., Jean, J. M., Smith, B. W., Lafyatis, R., Demierre, M. F., Weiss, D. J., French, D. L., Gadue, P., Murphy, G. J., Mostoslavsky, G., and Kotton, D. N., Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells, 28, 1728–1740 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld, M., and Hochedlinger, K., Induced pluripotency: history, mechanisms, and applications. Genes Dev., 24, 2239–2263 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld, M., Maherali, N., Breault, D. T., and Hochedlinger, K., Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2, 230–240 (2008a).

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochedlinger, K., Induced pluripotent stem cells generated without viral integration. Science, 322, 945–949 (2008b).

    Article  PubMed  CAS  Google Scholar 

  • Swistowski, A., Peng, J., Liu, Q., Mali, P., Rao, M. S., Cheng, L., and Zeng, X., Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells, 28, 1893–1904 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., Kitamura, K., Kumagai, G., Nishino, M., Tomisato, S., Higashi, H., Nagai, T., Katoh, H., Kohda, K., Matsuzaki, Y., Yuzaki, M., Ikeda, E., Toyama, Y., Nakamura, M., Yamanaka, S., and Okano, H., Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. U. S. A., 107, 12704–12709 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., Wernig, M., Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Xu, X., Li, J., Liu, J., Gu, H., Zhang, R., Chen, J., Kuang, Y., Fei, J., Jiang, C., Wang, P., Pei, D., Ding, S., and Xie, X., Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res., 21, 1424–1435 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Weissman, I. L., Stem cells: units of development, units of regeneration, and units in evolution. Cell, 100, 157–168 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Wernig, M., Zhao, J. P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., and Jaenisch, R., Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A., 105, 5856–5861 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H., Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H. K., and Nagy, A., piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458, 766–770 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Xie, H., Ye, M., Feng, R., Graf, T., Stepwise reprogramming of B cells into macrophages. Cell, 117, 663–676 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Xu, D., Alipio, Z., Fink, L. M., Adcock, D. M., Yang, J., Ward, D. C., and Ma, Y., Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl. Acad. Sci. U. S. A., 106, 808–813 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Yagi, T., Ito, D., Okada, Y., Akamatsu, W., Nihei, Y., Yoshizaki, T., Yamanaka, S., Okano, H., and Suzuki, N., Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum. Mol. Genet., 20, 4530–4539 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka, S., A fresh look at iPS cells. Cell, 137, 13–17 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Yang, C. S., Li, Z., and Rana, T. M., microRNAs modulate iPS cell generation. RNA, 17, 1451–1460 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Cai, J., Zhang, Y., Wang, X., Li, W., Xu, J., Li, F., Guo, X., Deng, K., Zhong, M., Chen, Y., Lai, L., Pei, D., and Esteban, M. A., Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J. Biol. Chem., 285, 40303–40311 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Ye, L., Chang, J. C., Lin, C., Sun, X., Yu, J., and Kan, Y. W., Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc. Natl. Acad. Sci. U. S. A., 106, 9826–9830 (2009a).

    Article  PubMed  CAS  Google Scholar 

  • Ye, Z., Zhan, H., Mali, P., Dowey, S., Williams, D. M., Jang, Y. Y., Dang, C. V., Spivak, J. L., Moliterno, A. R., and Cheng, L., Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood, 114, 5473–5480 (2009b).

    Article  PubMed  CAS  Google Scholar 

  • Yoshizaki, S., Nishi, M., Kondo, A., Kojima, Y., Yamamoto, N., and Ryo, A., Vaccination with Human Induced Pluripotent Stem Cells Creates an Antigen-Specific Immune Response Against HIV-1 gp160. Front. Microbiol., 2, 1–8 (2011).

    Google Scholar 

  • Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, II, and Thomson, J. A., Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, II, and Thomson, J. A., Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, N., An, M. C., Montoro, D., and Ellerby, L. M., Characterization of human huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr., 2, RRN1193 (2010).

    Article  PubMed  Google Scholar 

  • Zhao, T., Zhang, Z. N., Rong, Z., and Xu, Y., Immunogenicity of induced pluripotent stem cells. Nature, 474, 212–215 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., Siuzdak, G., Scholer, H. R., Duan, L., and Ding, S., Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., and Melton, D. A., In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455, 627–632 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ssang-Goo Cho.

Additional information

These authors contributed equally as a first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M., Paul, S., Lim, H. et al. Induced pluripotent stem cell research: A revolutionary approach to face the challenges in drug screening. Arch. Pharm. Res. 35, 245–260 (2012). https://doi.org/10.1007/s12272-012-0205-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0205-9

Keyw words

Navigation