Skip to main content
Log in

Anti-neuroinflammatory effects of tryptanthrin from Polygonum tinctorium Lour. in lipopolysaccharide-stimulated BV2 microglial cells

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

This study was conducted to isolate the anti-neuroinflammatory component(s) in the 80% EtOH extract of P. tinctoria, and to investigate underlying molecular mechanism of the anti-neuroinflammatory component(s) in LPS-induced BV2 microglial cells. To isolate the active component(s) in the extract, various chromatographic methods were employed, and the structures of the isolated secondary metabolites were determined mainly by analysis of spectroscopic data such as NMR and MS data. Tryptanthrin (1), isolated from P. tinctoria extract, significantly inhibited the protein expression of iNOS and COX-2, and reduced the levels of their products (NO and PGE2) in LPS-stimulated BV2 microglial cells. Tryptanthrin (1) also downregulated the production of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β. These anti-neuroinflammatory effects of tryptanthrin (1) was elucidated to be correlated with inactivating NF-κB pathway by interrupting the phosphorylation and degradation of the inhibitor of κB-α protein, and inhibiting the DNA binding activity of NF-κB. In addition, tryptanthrin (1) suppressed the activation of p38 MAPK pathway. Furthermore, tryptanthrin (1) inhibited the TLR4 and MyD88 protein expression in LPS-stimulated BV2 microglial cells. Taken together, it was suggested that tryptanthrin (1) have anti-neuroinflammatory effect by regulating TLR4-MyD88-mediated several inflammatory pathways including p38 and NF-κB pathways in LPS-induced BV2 microglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

CC:

Column chromatography

Cdna:

Complementary DNA

CNS:

Central nervous system

COX-2:

Cyclooxygenase-2

DMEM:

Dulbecco’s modified eagle’s medium

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

ECL:

Enhanced chemilumescent

ELISA:

Enzyme-linked immunosorbent assay

ERK1/2:

Extracellular signal-regulated kinase

EtOAc:

Ethyl acetate

FBS:

Fetal bovine serum

HCl:

Hydrochloric acid

HPLC:

High-performance liquid chromatography

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

IκB-α:

Inhibitor kappa B-α

JNK:

c-jun N-terminal kinase

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MeOH:

Methyl alcohol

mRNA:

messenger RNA

MS:

Mass spectrometry

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

MyD88:

Myeloid differentiation primary 88

NF-κB:

Nuclear factor-kappa B

NMR:

Nuclear magnetic resonance

NO:

Nitric oxide

PCNA:

Proliferating cell nuclear antigen

PCR:

Polymerase chain reaction

PD:

Parkinson’s disease

PGE2 :

Prostaglandin E2

PMSF:

Phenylmethylsulfonyl fluoride

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor-α

References

  • Amor S, Puentes F, Baker D, Van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69

    CAS  Google Scholar 

  • Dai JN, Zong Y, Zhong LM, Li YM, Zhang W, Bian LG, Ai QL, Liu YD, Sun J, Lu D (2011) Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PLoS ONE 6(7):e21891

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeRoo CS, Armitage RA (2011) Direct identification of dyes in textiles by direct analysis in real time-time of flight mass spectrometry. Anal Chem 83(18):6924–6928

    PubMed  Google Scholar 

  • Ghosh S, May MJ, Kopp EB (1994) NF-kappa B and Rel proteins: evolutionarily on served mediators of immune responses. Annu Rev Immunol 16:225–260

    Google Scholar 

  • Ha SK, Moon E, Ju MS, Kim DH, Ryu JH, Oh MS, Kim SY (2012) 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 63(2):211–223

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Aga H, Chaen H, Fukuda S, Kurimoto M (1999) Isolation and identification of anti-Hericobacter pylori compounds from Polygonum tinctorium Lour. Nat Med 53(1):27–31

    CAS  Google Scholar 

  • Himaya SW, Ryu B, Qian ZJ, Kim SK (2012) Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Toxicol In Vitro 26(6):878–887

    CAS  PubMed  Google Scholar 

  • Honda G, Tabata M (1979) Isolation of antifungal principle tryptanthrin, from Strobilanthes cusia O. Kuntze. Planta Med 36(1):85–90

    CAS  PubMed  Google Scholar 

  • Hseu YC, Wu FY, Wu JJ, Chen JY, Chang WH, Lu FJ, Lai YC, Yang HL (2005) Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol 5(13–14):1914–1925

    CAS  PubMed  Google Scholar 

  • Ishihara T, Kohno K, Ushio S, Iwaki K, Ikeda M, Kurimoto M (2000) Tryptanthrin inhibits nitric oxide and prostaglandin E(2) synthesis by murine macrophages. Eur J Pharmacol 407(1–2):197–204

    CAS  PubMed  Google Scholar 

  • Iwaki K, Kurimoto M (2002) Cancer preventive effects of the indigo plant, Polygonum tinctorium. Recent Res Dev Cancer 4:429–437

    CAS  Google Scholar 

  • Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochem Biophys Acta 1754(1–2):253–262

    CAS  PubMed  Google Scholar 

  • Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    CAS  PubMed  Google Scholar 

  • Kim W, Youn H, Kwon T, Kang J, Kim E, Son B, Yang HJ, Jung Y, Youn B (2013) PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Pharmacol Res 70(1):90–101

    CAS  PubMed  Google Scholar 

  • Kim DC, Lee HS, Ko W, Lee DS, Sohn JH, Yim JH, Kim YC, Oh H (2014) Anti-inflammatory effect of methylpenicinoline from a marine isolate of Penicillium sp. (SF-5995): inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced RAW264.7 macrophages and BV2 microglia. Molecules 19(11):18073–18089

    PubMed  PubMed Central  Google Scholar 

  • Kim DC, Yoon CS, Quang TH, Ko W, Kim JS, Oh H, Kim YC (2016) Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 microglial cells. Int J Mol Sci 17(2):255

    PubMed  PubMed Central  Google Scholar 

  • Kimoto T, Yamamoto Y, Hino K, Koya S, Aga H, Hashimoto T, Hanaya T, Arai S, Ikeda M, Fukuda S, Kurimoto M (1999) Cytotoxic effects of substances in indigo plant (Polygonum tinctorium Lour.) on malignant tumor cells. Nat Med 53:72–79

    CAS  Google Scholar 

  • Kimoto T, Hino K, Koya-Miyata S, Yamamoto Y, Takeuchi M, Nishizaki Y, Micallef MJ, Ushio S, Iwaki K, Ikeda M, Kurimoto M (2001) Cell differentiation and apoptosis of monocytic and promyelocytic leukemia cells (U-937 and HL-60) by tryptanthrin, an active ingredient of Polygonum tinctorium Lour. Pathol Int 51(5):315–325

    CAS  PubMed  Google Scholar 

  • Koya-Miyata S, Kimoto T, Micallef MJ, Hino K, Taniguchi M, Ushio S, Iwaki K, Ikeda M, Kurimoto M (2001) Prevention of azoxymethane-induced intestinal tumors by a crude ethyl acetate-extract and tryptanthrin extracted from Polygonum tinctorium Lour. Anticancer Res 21(5):3295–3300

    CAS  PubMed  Google Scholar 

  • Kukuła-Koch W, Głowniak K, Koch W, Kwiatkowski S (2013) Optimization of temperature affected extraction of indigo dye in the leaf extracts of Polygonum tinctorium Ait. cultivated in Poland–preliminary studies. Acta Pol Pharm 70(3):579–583

    PubMed  Google Scholar 

  • Kwon YW, Cheon SY, Park SY, Song J (2017) Tryptanthrin suppresses the activation of the LPS-treated BV2 microglial cell line via Nrf2/HO-1 antioxidant signaling. Front Cell Neurosci 11:18

    PubMed  PubMed Central  Google Scholar 

  • Lappas M, Permezel M, Georgiou HM, Rice GE (2002) Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol Reprod 67(2):668–673

    CAS  PubMed  Google Scholar 

  • Lee KW, Ji HM, Kim DW, Choi SM, Kim S, Yang EJ (2013) Effects of Hominis placenta on LPS-induced cell toxicity in BV2 microglial cells. J Ethnopharmacol 147(2):286–292

    PubMed  Google Scholar 

  • Lee DS, Cui X, Ko W, Kim KS, Kim IC, Yim JH, An RB, Kim YC, Oh H (2014) A new sulfonic acid derivative, (Z)-4-methylundeca-1,9-diene-6-sulfonic acid, isolated from the cold water sea urchin inhibits inflammatory responses through JNK/p38 MAPK and NF-κB inactivation in RAW 264.7. Arch Pharm Res 37(8):983–991

    PubMed  Google Scholar 

  • Lee K, Yim JH, Lee HK2, Pyo S (2016) Inhibition of VCAM-1 expression on mouse vascular smooth muscle cells by lobastin via downregulation of p38, ERK 1/2 and NF-κB signaling pathways. Arch Pharm Res 39(1):83–93

  • Lin YK, Leu YL, Huang TH, Wu YH, Chung PJ, Su Pang JH, Hwang TL (2009) Anti-inflammatory effects of the extract of indigo naturalis in human neutrophils. J Ethnopharmacol 125(1):51–58

    CAS  PubMed  Google Scholar 

  • Liu Y, Shepherd EG, Nelin LD (2007) MAPK phosphatases–regulating the immune response. Nat Rev Immunol 7(3):202–212

    CAS  PubMed  Google Scholar 

  • Liu HE, Chang AS, Teng CM, Chen CC, Tsai AC, Yang CR (2011) Potent anti-inflammatory effects of denbinobin mediated by dual inhibition of expression of inducible no synthase and cyclooxygenase 2. Shock 35(2):191–197

    CAS  PubMed  Google Scholar 

  • Long-Smith CM, Sullivan AM, Nolan YM (2009) The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 89(3):277–287

    CAS  PubMed  Google Scholar 

  • Lue LF, Kuo YM, Beach T, Walker DG (2010) Microglia activation and anti-inflammatory regulation in Alzheimer’s disease. Mol Neurobiol 41(2–3):115–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantzouris D, Karapanagiotis I, Valianou L, Panayiotou C (2011) HPLC-DAD-MS analysis of dyes identified in textiles from Mount Athos. Anal Bioanal Chem 399(9):3065–3079

    CAS  PubMed  Google Scholar 

  • Miao S, Shi X, Zhang H, Wang S, Sun J, Hua W, Miao Q, Zhao Y, Zhang C (2011) Proliferation-attenuating and apoptosis-inducing effects of tryptanthrin on human chronic myeloid leukemia K562 cell line in vitro. Int J Mol Sci 12(6):3831–3845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T (1995) Nippon Yakusou Zensyo. Sin Nippon Houki, Japan

    Google Scholar 

  • Moreillon P, Majcherczyk PA (2003) Proinflammatory activity of cell-wall constituents from gram-positive bacteria. Scand J Infect Dis 35(9):632–641

    CAS  PubMed  Google Scholar 

  • Ngan NT, Quang TH, Kim KW, Kim HJ, Sohn JH, Kang DG, Lee HS, Kim YC, Oh H (2017) Anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungal strain Penicillium sp. SF-5629. Arch Pharm Res 40(3):328–337

    PubMed  Google Scholar 

  • Park SY, Jin ML, Kim YH, Kim Y, Lee SJ (2012) Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int Immunopharmacol 14(1):13–20

    CAS  PubMed  Google Scholar 

  • Potewar TM, Ingale SA, Srinivasan KV (2008) Synthesis of tryptanthrin and deoxyvasicinone by a regioselective lithiation-intramolecular electrophilic reaction approach. Arkivoc 14:100–108

    Google Scholar 

  • Recio MC, Cerdá-Nicolás M, Potterat O, Hamburger M, Ríos JL (2006) Anti-inflammatory and antiallergic activity in vivo of lipophilic Isatis tinctoria extracts and tryptanthrin. Planta Med 72(6):539–546

    CAS  PubMed  Google Scholar 

  • Siebenlist U, Franzoso G, Brown K (1994) Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 10:405–455

    CAS  PubMed  Google Scholar 

  • Sugama S (2009) Stress-induced microglial activation may facilitate the progression of neurodegenerative disorders. Med Hypotheses 73(6):1031–1034

    CAS  PubMed  Google Scholar 

  • Suh N, Honda T, Finlay HJ, Barchowsky A, Williams C, Benoit NE, Xie QW, Nathan C, Gribble GW, Sporn MB (1998) Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res 58(4):717–723

    CAS  PubMed  Google Scholar 

  • Sun YN, Li W, Kim JH, Yan XT, Kim JE, Yang SY, Kim YH (2015) Chemical constituents from the root of Polygonum multiflorum and their soluble epoxide hydrolase inhibitory activity. Arch Pharm Res 38(6):998–1004

    CAS  PubMed  Google Scholar 

  • Titheradge MA (1998) The enzymatic measurement of nitrate and nitrite. Methods Mol Biol 100:83–91

    CAS  PubMed  Google Scholar 

  • Wang X, Stridh L, Li W, Dean J, Elmgren A, Gan L, Eriksson K, Hagberg H, Mallard C (2009) Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 183(11):471–7477

    Google Scholar 

  • Yao L, Kan EM, Lu J, Hao A, Dheen ST, Kaur C, Ling EA (2013) Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J Neuroinflammation 10:23

    PubMed  PubMed Central  Google Scholar 

  • Yoon CS, Kim DC, Lee DS, Kim KS, Ko W, Sohn JH, Yim JH, Kim YC, Oh H (2014) Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells. Int Immunopharmacol 23(2):568–574

    CAS  PubMed  Google Scholar 

  • Yu ST, Chen TM, Chern JW, Tseng SY, Chen YH (2009) Downregulation of GSTpi expression by tryptanthrin contributing to sensitization of doxorubicin-resistant MCF-7 cells through C-Jun NH2-terminal kinase-mediated apoptosis. Anticancer Drugs 20(5):382–388

    CAS  PubMed  Google Scholar 

  • Yuan L, Wu Y, Ren X, Liu Q, Wang J, Liu X (2014) Isoorientin attenuates lipopolysaccharide-induced pro-inflammatory responses through down-regulation of ROS-related MAPK/NF-κB signaling pathway in BV-2 microglia. Mol Cell Biochem 386(1–2):153–165

    CAS  PubMed  Google Scholar 

  • Zeng KW, Fu H, Liu GX, Wang XM (2010) Icariin attenuates lipopolysaccharide-induced microglial activation and resultant death of neurons by inhibiting TAK1/IKK/NF-kappaB and JNK/p38 MAPK pathways. Int Immunopharmacol 10(6):668–678

    CAS  PubMed  Google Scholar 

  • Zhang G, Ghosh S (2001) Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107(1):13–19

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (NRF-2016R1A2B4007472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuncheol Oh.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, DC., Baek, H.Y. et al. Anti-neuroinflammatory effects of tryptanthrin from Polygonum tinctorium Lour. in lipopolysaccharide-stimulated BV2 microglial cells. Arch. Pharm. Res. 41, 419–430 (2018). https://doi.org/10.1007/s12272-018-1020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-1020-8

Keywords

Navigation