Skip to main content
Log in

Functionalization of silicon nanowire surfaces with metal-organic frameworks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

    Article  CAS  Google Scholar 

  2. Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330.

    Article  CAS  Google Scholar 

  3. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

    Article  CAS  Google Scholar 

  4. Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.

    Article  CAS  Google Scholar 

  5. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472.

    Article  CAS  Google Scholar 

  6. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300, 1127–1129.

    Article  CAS  Google Scholar 

  7. Millward, A. R.; Yaghi, O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999.

    Article  CAS  Google Scholar 

  8. Murray, L. J.; Dinca, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.

    Article  CAS  Google Scholar 

  9. Chen, B. L.; Liang, C. D.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. A Microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem. Int. Ed. 2006, 45, 1390–1393.

    Article  CAS  Google Scholar 

  10. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

    Article  CAS  Google Scholar 

  11. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982–986.

    Article  CAS  Google Scholar 

  12. Kreno, L. E.; Hupp, J. T.; Van Duyne, R. P. Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 2010, 82, 8042–8046.

    Article  CAS  Google Scholar 

  13. Lu, G.; Hupp, J. T. Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 2010, 132, 7832–7833.

    Article  CAS  Google Scholar 

  14. Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780.

    Article  CAS  Google Scholar 

  15. Della Rocca, J.; Liu, D. M.; Lin, W. B. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44, 957–968.

    Article  Google Scholar 

  16. Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M.; Matzger, A. J. A Route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523–527.

    Article  CAS  Google Scholar 

  17. Jahan, M.; Bao, Q. L.; Yang, J. X.; Loh, K. P. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire. J. Am. Chem. Soc. 2010, 132, 14487–14495.

    Article  CAS  Google Scholar 

  18. Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.

    Article  CAS  Google Scholar 

  19. Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  CAS  Google Scholar 

  20. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

    Article  CAS  Google Scholar 

  21. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  CAS  Google Scholar 

  22. Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

    Article  CAS  Google Scholar 

  23. Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150.

    Article  CAS  Google Scholar 

  24. Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315.

    Article  CAS  Google Scholar 

  25. Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Woll, C. Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 2007, 129, 15118–15119.

    Article  CAS  Google Scholar 

  26. Shekhah, O.; Wang, H.; Zacher, D.; Fischer, R. A.; Woll, C. Growth mechanism of metal-organic frameworks: Insights into the nucleation by employing a step-by-step route. Angew. Chem. Int. Ed. 2009, 48, 5038–5041.

    Article  CAS  Google Scholar 

  27. B’etard, A. l.; Fischer, R. A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev., in press, DOI: 10.1021/cr200167v.

  28. Biemmi, E.; Darga, A.; Stock, N.; Bein, T. Direct growth of Cu3(btc)2(H2O)3·xH2O thin films on modified QCM-gold electrodes-water sorption isotherms. Micropor. Mesopor. Mat. 2008, 114, 380–386.

    Article  CAS  Google Scholar 

  29. Lu, G.; Farha, O. K.; Kreno, L. E.; Schoenecker, P. M.; Walton, K. S.; Van Duyne, R. P.; Hupp, J. T. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing. Adv. Mater. 2011, 23, 4449–4452.

    Article  CAS  Google Scholar 

  30. Arslan, H. K.; Shekhah, O.; Wohlgemuth, J.; Franzreb, M.; Fischer, R. A.; Wöll, C. High-throughput fabrication of uniform and homogenous MOF coatings. Adv. Funct. Mater. 2011, 21, 4228–4231.

    Article  CAS  Google Scholar 

  31. Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci USA 2008, 105, 11623–11627.

    Article  CAS  Google Scholar 

  32. Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.

    Article  CAS  Google Scholar 

  33. Huang, M. H.; Wu, Y. Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. D. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116.

    Article  CAS  Google Scholar 

  34. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

    Article  CAS  Google Scholar 

  35. Dick, K. A.; Deppert, K.; Karlsson, L. S.; Wallenberg, L. R.; Samuelson, L.; Seifert, W. A new understanding of Au-assisted growth of III–V semiconductor nanowires. Adv. Funct. Mater. 2005, 15, 1603–1610.

    Article  CAS  Google Scholar 

  36. Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69–71.

    Article  CAS  Google Scholar 

  37. Wang, Y. W.; Schmidt, V.; Senz, S.; Gosele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186–189.

    Article  CAS  Google Scholar 

  38. Karimi, B.; Zamani, A.; Abedia, S.; Clark, J. H. Aerobic oxidation of alcohols using various types of immobilized palladium catalyst: The synergistic role of functionalized ligands, morphology of support, and solvent in generating and stabilizing nanoparticles. Green Chem. 2009, 11, 109–119.

    Article  CAS  Google Scholar 

  39. Zacher, D.; Schmid, R.; Woll, C.; Fischer, R. A. Surface chemistry of metal-organic frameworks at the liquid-solid interface. Angew. Chem. Int. Ed. 2011, 50, 176–199.

    Article  CAS  Google Scholar 

  40. Hermes, S.; Zacher, D.; Baunemann, A.; Woll, C.; Fischer, R. A. Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers. Chem. Mater. 2007, 19, 2168–2173.

    Article  CAS  Google Scholar 

  41. Centrone, A.; Yang, Y.; Speakman, S.; Bromberg, L.; Rutledge, G. C.; Hatton, T. A. Growth of metal-organic frameworks on polymer surfaces. J. Am. Chem. Soc. 2010, 132, 15687–15691.

    Article  CAS  Google Scholar 

  42. Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  CAS  Google Scholar 

  43. Wang, B.; Cote, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 2008, 453, 207–211.

    Article  CAS  Google Scholar 

  44. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.

    Article  CAS  Google Scholar 

  45. Zacher, D.; Liu, J. N.; Huber, K.; Fischer, R. A. Nanocrystals of [Cu3(btc)2] (HKUST-1): A combined time-resolved light scattering and scanning electron microscopy study. Chem. Commun. 2009, 1031–1033.

  46. Millange, F.; Medina, M. I.; Guillou, N.; Ferey, G.; Golden, K. M.; Walton, R. I. Time-resolved in situ diffraction study of the solvothermal crystallization of some prototypical metal-organic frameworks. Angew. Chem. Int. Ed. 2010, 49, 763–766.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cui.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Yao, Y., Cha, J.J. et al. Functionalization of silicon nanowire surfaces with metal-organic frameworks. Nano Res. 5, 109–116 (2012). https://doi.org/10.1007/s12274-011-0190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0190-1

Keywords

Navigation