Skip to main content
Log in

Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of au nanoparticles on SiO2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The evolution of the film thickness and plasmonic properties for sputtered deposited Au nanoparticles on SiO2 layers have been monitored in real time using in situ spectroscopic ellipsometry in the photon energy range 0.75–4.1 eV. The spectroscopic ellipsometry data were analyzed with an optical model in which the optical constants for the Au nanoparticles were parameterized by B-splines which simultaneously provide an accurate determination of an effective thickness and an effective dielectric function. The effective thickness is interpreted with support of transmission and scanning electron microscopy and Rutherford backscattering measurements. Further parameterization of the optical constants by physical oscillators in the isolated spherical particle region allows the microstructural parameters such as size and Au fraction to be extracted. Real time in situ monitoring allows the growth of nanoparticles from the nucleation phase to near percolation to be followed, and there is a red-shift of the plasmon resonance absorption peak as the nanoparticles increase in size and their interaction becomes stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinchuk, A.; von Plessen, G.; Kreibig, U. Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J. Phys. D-Appl. Phys. 2004, 37, 3133–3139.

    Article  CAS  Google Scholar 

  2. Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22, 32–41.

    Article  CAS  Google Scholar 

  3. Toudert, J.; Babonneau, D.; Simonot, L.; Camelio, S.; Girardeau, T. Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: The influence of nanocluster size, shape and organization. Nanotechnology 2008, 19, 125709.

    Article  CAS  Google Scholar 

  4. Protopapa, M. L. Surface plasmon resonance of metal nano-particles sandwiched between dielectric layers: Theoretical modelling. Appl.Optics 2009, 48, 778–785.

    Article  CAS  Google Scholar 

  5. Sancho-Parramon, J. Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: A numerical study of size confinement and interparticle interaction effects. Nanotechnology 2009, 20, 235706.

    Article  CAS  Google Scholar 

  6. Sawyer, W. G.; Freudenberg, K. D.; Bhimaraj, P.; Schadler, L. S. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 2003, 254, 573–580.

    Article  CAS  Google Scholar 

  7. Haes, A. J.; van Duyne, R. P. Probing the long range distance dependence of noble metal nanoparticles. In Proceedings of Quantum Dots, Nanoparticles and Nanowires (QDNN 2004), Boston, USA, 2004, pp 409–414..

  8. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 2010, 9, 205–213.

    Article  CAS  Google Scholar 

  9. Evanoff, D. D.; Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 2005, 6, 1221–1223.

    Article  CAS  Google Scholar 

  10. Shi, H. Z.; Zhang, L. D.; Cai, W. P. Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica Mater. Res. Bull. 2000, 35, 1689–1695.

    Article  CAS  Google Scholar 

  11. Biederman, H.; Martinu, L.; Slavinska, D.; Chudacek, I. Plasma deposition and properties of composite metal polymer and metal hard carbon-films. Pure Appl. Chem. 1988, 60, 607–618.

    Article  CAS  Google Scholar 

  12. Faupel, F.; Schürmann, U.; Takele, H.; Zaporojtchenko, V. Optical and electrical properties of polymer metal nano-composites prepared by magnetron co-sputtering Thin Solid Films 2006, 515, 801–804.

    Article  Google Scholar 

  13. Takele, H.; Greve, H.; Pochstein, C.; Zaporojtchenko, V.; Faupel, F. Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology 2006, 17, 3499–3505.

    Article  CAS  Google Scholar 

  14. Mandal, S. K.; Roy, R. K.; Pal, A. K. Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films. J. Phys. D-Appl. Phys. 2003, 36, 261–265.

    Article  CAS  Google Scholar 

  15. Kim, D. G.; Koyama, E.; Tokuhisa, H.; Koshizaki, N.; Do Kim, Y. Tunable aggregation of Au nanoparticles in Au/SiO2 composite film and its photo-absorbance. Appl. Phys. A-Mater. Sci. Process. 2008, 92, 263–266.

    Article  CAS  Google Scholar 

  16. Jun, H. S.; Lee, K. S.; Yoon, S. H.; Lee, T. S.; Kim, I. H.; Jeong, J. H.; Cheong, B.; Kim, A. S.; Cho, K. M.; Kim, W. M. 3rd order nonlinear optical properties of Au: SiO2 nano-composite films with varying Au particle size. Phys. Stat. Sol. A-Appl. Mat. 2006, 203, 1211–1216.

    Article  CAS  Google Scholar 

  17. Martinu, L.; Poitras, D. Plasma deposition of optical films and coatings: A review. J. Vac. Sci. Technol. A 2000, 18, 2619–2645.

    Article  CAS  Google Scholar 

  18. Suhr, H.; Etspuler, A.; Feurer, E.; Oehr, C. Plasma-deposited metal-containing polymer-films. Plasma Chem. Plasma Process. 1988, 8, 9–17.

    Article  CAS  Google Scholar 

  19. Fracassi, F.; D’Agostino, R. Plasma processed surfaces for biomedical devices: PEO-like, Ag/PEO-like, -COOH functional and micro-patterned coatings. VIDE-SCIENCE TECNIQUE ET APPLICATIONS 2002, 57, 40–48.

    Google Scholar 

  20. Beyene, H. T.; Tichelaar, F. D.; Peeters, P.; Kolev, I.; van de Sanden, M. C. M.; Creatore, M. Hybrid Sputtering-Remote PECVD Deposition of Au Nanoparticles on SiO2 Layers for Surface Plasmon Resonance-Based Colored Coatings. Plasma Process. Polym. 2010, 7, 657–664.

    Article  CAS  Google Scholar 

  21. Beyene, H. T.; Tichelaar, F. D.; Verheijen, M. A.; van de Sanden, M. C. M.; Creatore, M. Plasma-assisted depositon of Au/SiO2 multi-layers as surface plasmon resonance-based red-colored coatings. Plasmonics 2011, 6, 255–260.

    Article  CAS  Google Scholar 

  22. Cohen, R. W.; Cody, G. D.; Coutts, M. D.; Abeles, B. Optical properties of granular silver and gold films. Phys. Rev. B 1973, 8, 3689–3701.

    Article  CAS  Google Scholar 

  23. Kreibig, U.; Vollmer, M. Optical properties of metal clusters. Springer-Verlag: Berline Heidelberg, 1995.

    Google Scholar 

  24. Wormeester, H.; Stefan Kooij, E.; Poelsema, B. Effective dielectric response of nanostructured layers. Phys. Stat. Sol. A-Appl. Mat. 2008, 205, 756–763.

    Article  Google Scholar 

  25. Nguyen, H. V.; An, I.; Collins, R. W. Evolution of the optical functions of thin-film aluminium: A real-time spectroscopic ellipsometry study. Phys. Rev. B 1993, 47, 3947–3965.

    Article  CAS  Google Scholar 

  26. Oates, T. W. H.; McKenzie, D. R.; Bilek, M. M. M. Percolation threshold in ultrathin titanium films determined by in situ spectroscopic ellipsometry. Phy. Rev. B 2004, 70, 195406.

    Article  Google Scholar 

  27. Oates, T. W. H.; Mücklich, A. Evolution of plasmon resonances during plasma deposition of silver nanoparticles. Nanotechnology 2005, 16, 2606–2611.

    Article  CAS  Google Scholar 

  28. Arwin, H.; Aspnes, D. E. Unambiguous determination of thickness and dielectric function of thin films by spectroscopic ellipsometry. Thin Solid Films 1984, 113, 101–113.

    Article  CAS  Google Scholar 

  29. Hövel, M.; Gompf, B.; Dressel, M. Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B 2010, 81, 035402.

    Article  Google Scholar 

  30. LončariĆ, M.; Sancho-Parramon, J.; Zorc, H. Optical pro-perties of gold island films: A spectroscopic ellipsometry study. Thin Solid Films 2011, 519, 2946–2950.

    Article  Google Scholar 

  31. Dalacu, D.; Martinu, L. Optical properties of discontinuous gold films: Finite-size effects. J. Opt. Soc. Am. B 2001, 18, 85–92.

    Article  Google Scholar 

  32. Kuzmenko, A. B. Kramers-Kronig constrained variational analysis of optical spectra. Rev. Sci. Instrum. 2005, 76, 083108.

    Article  Google Scholar 

  33. Lee, S.; Hong, J.; OH, S.-G. Real-time ellipsometry studies of gold thin-film Growth. Jpn. J. Appl. Phys. 1997, 36, 3662–3668.

    Article  CAS  Google Scholar 

  34. Kooij, E. S.; Wormeester, H.; Brouwer, E. A. M.; van Vroonhoven, E.; van Silfhout, A.; Poelsema, B. Optical Characterization of thin colloidal gold films by spectroscopic ellipsometry. Langmuir 2002, 18, 4401–4413.

    Article  CAS  Google Scholar 

  35. Langereis, E.; Heil, S. B. S.; knoops, H. C. M.; Keuning, W.; van de Sanden, M. C. M.; Kessels, W. M. M. J. Phys. D: Appl. Phys. 2009, 42, 073001.

    Article  Google Scholar 

  36. Losurdo, M.; Bergmair, M.; Bruno, G.; Cattelan, D.; Cobet, C.; de Martino, A.; Fleischer, K.; Dohcevic-Mitrovic, Z.; Esser, N.; Galliet, M. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: State-of-art, potential, and perspectives. J. Nanopart. Res. 2009, 11, 1521–1554.

    Article  CAS  Google Scholar 

  37. Johs, B.; Hale, J. -S. Dielectric function representation by B-splines. Phys. Stat. Sol. A-Appl. Mat. 2008, 205, 715–719.

    Article  CAS  Google Scholar 

  38. Weber, J. W.; Hansen, T. A. R.; van de Sanden, M. C. M.; Engeln, R. B-spine parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon. J. Appl. Phys. 2009, 106, 123503.

    Article  Google Scholar 

  39. Weber, J. W.; Calado, V. E.; van de Sanden, M. C. M. Optical constants of graphene measured by spectroscopic ellipsometry. Appl. Phys. Lett. 2010, 97, 091904.

    Article  Google Scholar 

  40. Barreca, D.; Gasparotto, A.; Tondello, E.; Bruno, G.; Losurdo, M. Influence of porcess parameters on the morphology of Au/SiO2 nanocomposites synthesized by radio-frequency sputtering. J. Appl. Phys. 2004, 96, 1655.

    Article  CAS  Google Scholar 

  41. Zaporojtchenko, V.; Zekonyte, J.; Biswas, A.; Faupel, F. Controlled growth of nano-size metal clusters on polymers by using VPD method. Surf. Sci. 2003, 532, 300–305.

    Article  Google Scholar 

  42. Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 2001, 105, 3441–3452.

    Article  CAS  Google Scholar 

  43. Hövel, H.; Fritz, S.; Hilger, A.; Kreibig, U. Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Phy. Rev. B 1993, 48, 18178.

    Article  Google Scholar 

  44. LončariĆ, M.; Sancho-Parramon, J.; Zorc, H. Optical pro-perties of gold island films: A spectroscopic ellipsometry study. Thin Solid Films 2011, 519, 2946.

    Article  Google Scholar 

  45. Sheng, J. W.; Kadono, K.; Yazawa, T. Nanosized gold cluster formation in selected areas of soda-lime silicate glass. J. Non-Cryst. Solids 2003, 324, 295–299.

    Article  CAS  Google Scholar 

  46. Noguez, C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 2007, 111, 3806–3819.

    Article  CAS  Google Scholar 

  47. Maier, S. A.; Atwater, H. A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005, 98, 011101.

    Article  Google Scholar 

  48. Link, S.; Mohamed, M. B.; El-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 1999, 103, 8410–8426.

    Article  CAS  Google Scholar 

  49. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  CAS  Google Scholar 

  50. Halas, N. J.; Lal, S.; Chang, W. -S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.

    Article  CAS  Google Scholar 

  51. Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Creatore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyene, H.T., Weber, J.W., Verheijen, M.A. et al. Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of au nanoparticles on SiO2 . Nano Res. 5, 513–520 (2012). https://doi.org/10.1007/s12274-012-0236-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0236-z

Keywords

Navigation