Skip to main content
Log in

Chiral guanosine 5′-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plasmonics and chirality in metal nanomaterials are intriguing and inspiring phenomena. Nanoscale chirality of metal nanomaterials has emerged as a hot topic in the past several years. Generally, most plasmon-induced circular dichroism (CD) responses of nanomaterials (> 10 nm) have been artificially created by modifying pre-made achiral nanomaterials with chiral agents, because the in situ generation of plasmon-induced CD responses of nanomaterials with larger size (> 10 nm) is not easy. Herein, we report a simple one-pot green synthesis of chiral gold nanoflowers (GNFs) with abundant petal-shaped tips in the chiral reduction environment arising from the presence of chiral guanosine 5′-monophosphate (5′-GMP) and the chiral reducing agent L-ascorbic acid (L-AA). Different reducing agents can impact the shape and chirality of the products. In addition, the size and chirality of the GNFs can be controlled by adjusting the reaction time. The as-synthesized GNFs have good biocompatibility and can be used for surface-enhanced Raman scattering (SERS) enhancement, cellular dark-field imaging and photothermal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2007, 2, 681–693.

    Article  CAS  Google Scholar 

  2. Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782.

    Article  CAS  Google Scholar 

  3. Huang, P.; Bao, L.; Zhang, C. L.; Lin, J.; Luo, T.; Yang, D. P.; He, M.; Li, Z. M.; Gao, G.; Gao, B. et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 2011, 32, 9796–9809.

    Article  CAS  Google Scholar 

  4. Yu, M. K.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012, 2, 3–44.

    Article  CAS  Google Scholar 

  5. Lukianova-Hleb, E. Y.; Oginsky, A. O.; Samaniego, A. P.; Shenefelt, D. L.; Wagner, D. S.; Hafner, J. H.; Farach-Carson, M. C.; Lapotko, D. O. Tunable plasmonic nanoprobes for theranostics of prostate cancer. Theranostics 2011, 1, 3–17.

    Article  CAS  Google Scholar 

  6. Yang, D. P.; Cui, D. X. Advances and prospects of gold nanorods. Chem. Asian J. 2008, 3, 2010–2022.

    Article  CAS  Google Scholar 

  7. Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    Article  CAS  Google Scholar 

  8. Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

    Article  CAS  Google Scholar 

  9. Forrer, P.; Schlottig, F.; Siegenthaler, H.; Textor, M. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. J. Appl. Electrochem. 2000, 30, 533–541.

    Article  CAS  Google Scholar 

  10. Ye, E. Y.; Win, K. Y.; Tan, H. R.; Lin, M.; Teng, C. P.; Mlayah, A.; Han, M. Y. Plasmonic gold nanocrosses with multidirectional excitation and strong photothermal effect. J. Am. Chem. Soc. 2011, 133, 8506–8509.

    Article  CAS  Google Scholar 

  11. Wu, H. L.; Chen, C. H.; Huang, M. H. Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chem. Mater. 2009, 21, 110–114.

    Article  CAS  Google Scholar 

  12. Xie, J. P.; Zhang, Q. B.; Lee, J. Y.; Wang, D. I. C. The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano 2008, 2, 2473–2480.

    Article  CAS  Google Scholar 

  13. Mohanty, A.; Garg, N.; Jin, R. C. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem. Inl. Ed. 2010, 49, 4962–4966.

    Article  CAS  Google Scholar 

  14. Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

    Article  CAS  Google Scholar 

  15. Su, B. L.; Tang, J. A.; Yang, H. H.; Chen, G. N.; Huang, J. X.; Tang, D. P. A graphene platform for sensitive electrochemical immunoassay of carcinoembryoninc antigen based on gold-nanoflower biolabels. Electroanal. 2011, 23, 832–841.

    Article  CAS  Google Scholar 

  16. Zhao, L. L.; Ji, X. H.; Sun, X. J.; Li, J.; Yang, W. S.; Peng, X. G. Formation and stability of gold nanoflowers by the seeding approach: The effect of intraparticle ripening. J. Phys. Chem. C 2009, 113, 16645–16651.

    Article  CAS  Google Scholar 

  17. Wang, Z. D.; Zhang, J. Q.; Ekman, J. M.; Kenis, P. J. A.; Lu, Y. DNA-mediated control of metal nanoparticle shape: One-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett. 2010, 10, 1886–1891.

    Article  CAS  Google Scholar 

  18. Ren, Y. P.; Xu, C. C.; Wu, M. J.; Niu, M. Y.; Fang, Y. Controlled synthesis of gold nanoflowers assisted by poly (vinyl pyrrolidone)-sodium dodecyl sulfate aggregations. Colloid. Surface A 2011, 380, 222–228.

    Article  CAS  Google Scholar 

  19. Kumari, S.; Singh, R. P. Glycolic acid-g-chitosan-gold nanoflower nanocomposite scaffolds for drug delivery and tissue engineering. Int. J. Biol. Macromol. 2012, 50, 878–883.

    Article  CAS  Google Scholar 

  20. Boca, S.; Rugina, D.; Pintea, A.; Barbu-Tudoran, L.; Astilean, S. Flower-shaped gold nanoparticles: Synthesis, characterization and their application as SERS-active tags inside living cells. Nanotechnology 2011, 22, 055702.

    Article  Google Scholar 

  21. Jiang, Y. Y.; Wu, X. J.; Li, Q.; Li, J. J.; Xu, D. S. Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity. Nanotechnology 2011, 22, 385601.

    Article  Google Scholar 

  22. Li, L. M.; Weng, J. Enzymatic synthesis of gold nano-flowers with trypsin. Nanotechnology 2010, 21, 305603.

    Article  Google Scholar 

  23. Huang, P.; Kong, Y. F.; Li, Z. M.; Gao, F.; Cui, D. X. Copper selenide nanosnakes: Bovine serum albumin-assisted room temperature controllable synthesis and characterization. Nanoscale Res. Lett. 2010, 5, 949–956.

    Article  CAS  Google Scholar 

  24. Huang, P.; Li, Z. M.; Hu, H. Y.; Cui, D. X. Synthesis and characterization of bovine serum albumin-conjugated copper sulfide nanocomposites. J. Nanomater. 2010, 641545.

  25. Huang, P.; Yang, D. P.; Zhang, C. L.; Lin, J.; He, M.; Bao, L.; Cui, D. Y. Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells. Nanoscale 2011, 3, 3623–3626.

    Article  CAS  Google Scholar 

  26. Huang, P.; Bao, L.; Yang, D. P.; Gao, G.; Lin, J.; Li, Z. M.; Zhang, C. L.; Cui, D. X. Protein-directed solution-phase green synthesis of BSA-conjugated M xSey (M = Ag, Cd, Pb, Cu) nanomaterials. Chem. Asian J. 2011, 6, 1156–1162.

    Article  CAS  Google Scholar 

  27. Pandoli, O.; Massi, A.; Cavazzini, A.; Spada, G. P.; Cui, D. X. Circular dichroism and UV-Vis absorption spectroscopic monitoring of production of chiral silver nanoparticles templated by guanosine 5′-monophosphate. Analyst 2011, 136, 3713–3719.

    Article  CAS  Google Scholar 

  28. Gautier, C.; Bürgi, T. Chiral gold nanoparticles. ChemPhysChem 2009, 10, 483–492.

    Article  CAS  Google Scholar 

  29. Zhu, M. Z.; Qian, H. F.; Meng, X. M.; Jin, S. S.; Wu, Z. K.; Jin, R. C. Chiral Au25 nanospheres and nanorods: Synthesis and insight into the origin of chirality. Nano Lett. 2011, 11, 3963–3969.

    Article  CAS  Google Scholar 

  30. Qian, H. F.; Zhu, M. Z.; Gayathri, C.; Gil, R. R.; Jin, R. C. Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 2011, 5, 8935–8942.

    Article  CAS  Google Scholar 

  31. Molotsky, T.; Tamarin, T.; Ben Moshe, A.; Markovich, G.; Kotlyar, A. B. Synthesis of chiral silver clusters on a DNA template. J. Phys. Chem. C 2010, 114, 15951–15954.

    Article  CAS  Google Scholar 

  32. Oh, H. S.; Liu, S.; Jee, H.; Baev, A.; Swihart, M. T.; Prasad, P. N. Chiral poly (fluorene-alt-benzothiadiazole)(PFBT) and nanocomposites with gold nanoparticles: Plasmonically and structurally enhanced chirality. J. Am. Chem. Soc. 2010, 132, 17346–17348.

    Article  CAS  Google Scholar 

  33. Xia, Y. H.; Zhou, Y. L.; Tang, Z. Y. Chiral inorganic nanoparticles: Origin, optical properties and bioapplications. Nanoscale 2011, 3, 1374–1382.

    Article  CAS  Google Scholar 

  34. Li, C.; Deng, K.; Tang, Z. Y.; Jiang, L. Twisted metal-amino acid nanobelts: Chirality transcription from molecules to frameworks. J. Am. Chem. Soc. 2010, 132, 8202–8209.

    Article  CAS  Google Scholar 

  35. Zhou, Y. L.; Yang, M.; Sun, K.; Tang, Z. Y.; Kotov, N. A. Similar topological origin of chiral centers in organic and nanoscale inorganic structures: Effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. J. Am. Chem. Soc. 2010, 132, 6006–6013.

    Article  CAS  Google Scholar 

  36. Slocik, J. M.; Govorov, A. O.; Naik, R. R. Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett. 2011, 11, 701–705.

    Article  CAS  Google Scholar 

  37. Gérard, V. A.; Gun’ko, Y. K.; Defrancq, E.; Govorov, A. O. Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles. Chem. Comm. 2011, 47, 7383–7385.

    Article  Google Scholar 

  38. Govorov, A. O. Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. application to various geometries. J. Phys. Chem. C 2011, 115, 7914–7923.

    Article  CAS  Google Scholar 

  39. Wang, L.; Hu, C. P.; Nemoto, Y.; Tateyama, Y.; Yamauchi, Y. On the role of ascorbic acid in the synthesis of single-crystal hyperbranched platinum nanostructures. Cryst. Growth Des. 2010, 10, 3454–3460.

    Article  CAS  Google Scholar 

  40. Zümreoglu-Karan, B. A rationale on the role of intermediate Au (III)-vitamin C complexation in the production of gold nanoparticles. J. Nanopart. Res. 2009, 11, 1099–1105.

    Article  Google Scholar 

  41. Murugadoss, A.; Pasricha, R.; Chattopadhyay, A. Ascorbic acid as a mediator and template for assembling metallic nanoparticles. J. Colloid Interf. Sci. 2007, 311, 303–310.

    Article  CAS  Google Scholar 

  42. Lieberman, I.; Shemer, G.; Fried, T.; Kosower, E. M.; Markovich, G. Plasmon-resonance-enhanced absorption and circular dichroism. Angew. Chem. Int. Ed. 2008, 47, 4855–4857.

    Article  CAS  Google Scholar 

  43. Li, Z. M.; Huang, P.; Zhang, X. J.; Lin, J.; Yang, S.; Liu, B.; Gao, F.; Xi, P.; Ren, Q. S.; Cui, D. X. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol. Pharm. 2010, 7, 94–104.

    Article  CAS  Google Scholar 

  44. Gao, G.; Wu, H. X.; Zhang, Y. X.; Luo, T.; Feng, L. L.; Huang, P.; He, M.; Cui, D. X. Synthesis of ultrasmall nucleotide-functionalized superparamagnetic Γ-Fe2O3 nano-particles. CrystEngComm 2011, 13, 4810–4813.

    Article  CAS  Google Scholar 

  45. Zhu, Z. N.; Meng, H. F.; Liu, W. J.; Liu, X. F.; Gong, J. X.; Qiu, X. H.; Jiang, L.; Wang, D.; Tang, Z. Y. Superstructures and SERS properties of gold nanocrystals with different shapes. Angew. Chem. Int. Ed. 2011, 50, 1593–1596.

    Article  CAS  Google Scholar 

  46. Xu, D.; Gu, J. J.; Wang, W. N.; Yu, X. C.; Xi, K.; Jia, X. D. Development of chitosan-coated gold nanoflowers as SERS-active probes. Nanotechnology 2010, 21, 375101.

    Article  Google Scholar 

  47. Bhirde, A. A.; Liu, G.; Jin, A.; Iglesias-Bartolome, R.; Sousa, A. A.; Leapman, R. D.; Gutkind, J. S.; Lee, S.; Chen, X. Y. Combining portable Raman probes with nanotubes for theranostic applications. Theranostics 2011, 1, 310–321.

    Article  CAS  Google Scholar 

  48. Van de Broek, B.; Devoogdt, N.; D’Hollander, A.; Gijs, H. L.; Jans, K.; Lagae, L.; Muyldermans, S.; Maes, G.; Borghs, G. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 2011, 5, 4319–4328.

    Article  Google Scholar 

  49. Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X. S.; Zhang, C. L.; Zhou, X. J.; Guo, S. W.; Cui, D. X. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 2011, 1, 240–250.

    Article  CAS  Google Scholar 

  50. Huang, P.; Lin, J.; Yang, D. P.; Zhang, C. L.; Li, Z. M.; Cui, D. X. Photosensitizer-loaded dendrimer-modified multi-walled carbon nanotubes for photodynamic therapy. J. Control. Release 2011, 152, e33–e34.

    Article  CAS  Google Scholar 

  51. Li, Y. Y.; Zhou, Y. L.; Wang, H. Y.; Perrett, S.; Zhao, Y. L.; Tang, Z. Y.; Nie, G. J. Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew. Chem. Int. Ed. 2011, 50, 5860–5864.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daxiang Cui or Xiaoyuan Chen.

Additional information

These authors equally contributed to this article

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., Pandoli, O., Wang, X. et al. Chiral guanosine 5′-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 5, 630–639 (2012). https://doi.org/10.1007/s12274-012-0248-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0248-8

Keywords

Navigation