Skip to main content
Log in

Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles have been used as drug delivery vehicles against a number of cancer cells. Most of these theranostic formulations have used solid iron oxide nanoparticles (SIONPs) loaded with chemotherapeutics as nano-carrier formulation for both magnetic resonance imaging (MRI) and cancer therapy. In this study, we applied the dopamine-plus-human serum albumin (HSA) method to modify hollow iron oxide nanoparticles (HIONPs) and encapsuated doxorubicin (DOX) within the hollow porous structure of the nano-carrier. The new delivery system can load more drug than solid iron oxide nanoparticles of the same core size using the same coating strategy. The HIONPs-DOX formulation also has a pH-dependent drug release behaviour. Compared with free DOX, the HIONPs-DOX were more effectively uptaken by the multidrug resistant OVCAR8-ADR cells and consequently more potent in killing drug resistant cancer cells. MRI phantom and cell studies also showed that the HIONPs-DOX can decrease the T 2 MRI signal intensity and can be used as a MRI contrast agent while acting as a drug delivery vehicle. For the first time, the dual application of chemo drug transport and MR imaging using the HIONPs-DOX formulation was achieved against both DOX-sensitive and DOX-resistant cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szakács, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234.

    Article  Google Scholar 

  2. Kirkin, V.; Joos, S.; Zörnig, M.. The role of Bcl-2 family members in tumorigenesis. Biochim. Biophys. Acta-Mol. Cell Res. 2004, 1644, 229–249.

    Article  CAS  Google Scholar 

  3. Kruh, G. D. Introduction to resistance to anticancer agents. Oncogene 2003, 22, 7262–7264.

    Article  CAS  Google Scholar 

  4. Calderwood, S. K.; Khaleque, M. A.; Sawyer, D. B.; Ciocca, D. R. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem. Sci. 2006, 31, 164–172.

    Article  CAS  Google Scholar 

  5. Duhem, C.; Ries, F.; Dicato, M. What Does Multidrug resistance (MDR) expression mean in the clinic. Oncologist 1996, 1, 151–158.

    Google Scholar 

  6. Krishna, R.; Mayer, L. D. Multidrug resistance (MDR) in cancer: Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci. 2000, 11, 265–283.

    Article  CAS  Google Scholar 

  7. Ferry, D. R.; Traunecker, H.; Kerr, D. J. Clinical trials of P-glycoprotein reversal in solid tumours. Eur. J. Cancer 1996, 32A, 1070–1081.

    Article  CAS  Google Scholar 

  8. Rowinsky, E. K.; Smith, L.; Wang, Y. M.; Chaturvedi, P.; Villalona, M.; Campbell, E.; Aylesworth, C.; Eckhardt, S. G.; Hammond, L.; Kraynak, M. et al. Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J. Clin. Oncol. 1998, 16, 2964–2976.

    CAS  Google Scholar 

  9. Jabr-Milane, L. S.; van Vlerken, L. E.; Yadav, S.; Amiji, M. M. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008, 34, 592–602.

    Article  CAS  Google Scholar 

  10. Moore, A.; Basilion, J. P.; Chiocca, E. A.; Weissleder, R. Measuring transferrin receptor gene expression by NMR imaging. Biochim. Biophys. Acta-Mol. Cell Res. 1998, 1402, 239–249.

    Article  CAS  Google Scholar 

  11. Zhang, Y.; Kohler, N.; Zhang, M. Q.; Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002, 23, 1553–1561.

    Article  CAS  Google Scholar 

  12. Ibarz, G.; Dähne, L.; Donath, E.; Möhwald, H. Smart micro- and nanocontainers for storage, transport, and release. Adv. Mater. 2001, 13, 1324–1327.

    Article  CAS  Google Scholar 

  13. Zhu, H. G.; McShane, M. J. Loading of hydrophobic materials into polymer particles: Implications for fluorescent nanosensors and drug delivery. J. Am. Chem. Soc. 2005, 127, 13448–13449.

    Article  CAS  Google Scholar 

  14. Sukhorukov, G. B.; Antipov, A. A.; Voigt, A.; Donath, E.; Mohwald, H. pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules. Macromol. Rapid Comm. 2001, 22, 44–46.

    Article  CAS  Google Scholar 

  15. Mamot, C.; Drummond, D. C.; Hong, K.; Kirpotin, D. B.; Park, J. W. Liposome-based approaches to overcome anticancer drug resistance. Drug Resist. Update 2003, 6, 271–279.

    Article  CAS  Google Scholar 

  16. Forssen, E. A.; Coulter, D. M.; Proffitt, R. T. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res. 1992, 52, 3255–3261.

    CAS  Google Scholar 

  17. Meng, H.; Liong, M.; Xia, T.; Li, Z. X.; Ji, Z. X.; Zink, J. I.; Nel, A. E. Engineered design of mesoporous silica nano-particles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010, 4, 4539–4550.

    Article  CAS  Google Scholar 

  18. You, J.; Zhang, G. D., Li, C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 2010, 4, 1033–1041.

    Article  CAS  Google Scholar 

  19. Xiao, Y. L.; Hong, H.; Matson, V. Z.; Javadi, A.; Xu, W. J.; Yang, Y. N,; sZhang, Y.; Engle, J. W.; Nickles, R. J.; Cai, W. B. et al. Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics, 2012, 2, 757–768.

    Article  CAS  Google Scholar 

  20. Ho, D. N.; Kohler, N.; Sigdel, A.; Kalluri, R.; Morgan, J. R.; Xu, C. J.; Sun, S. H. Penetration of endothelial cell coated multicellular tumor spheroids by iron oxide nanoparticles. Theranostics 2012, 2, 66–75.

    Article  CAS  Google Scholar 

  21. Huang, J.; Zhong, X. D.; Wang, L. Y.; Yang, L. L.; Mao, H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2012, 2, 86–102.

    Article  CAS  Google Scholar 

  22. Yu, M. K.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012, 2, 3–44.

    Article  CAS  Google Scholar 

  23. Xie, J.; Chen, K.; Huang, J.; Lee, S.; Wang, J. H.; Gao, J. H.; Li, X. G.; Chen, X. Y. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010, 31, 3016–3022.

    Article  CAS  Google Scholar 

  24. Quan, Q. M.; Xie, J.; Gao, H. K.; Yang, M.; Zhang, F.; Liu, G.; Lin, X.; Wang, A.; Eden, H. S.; Lee, S. et al. HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol. Pharmaceut. 2011, 8, 1669–1676.

    Article  CAS  Google Scholar 

  25. Gao, J. H.; Liang, G. L.; Cheung, J. S.; Pan, Y.; Kuang, Y.; Zhao, F.; Zhang, B.; Zhang, X. X.; Wu, E. X.; Xu, B. Multifunctional yolk-shell nanoparticles: A potential MRI contrast and anticancer agent. J. Am. Chem. Soc. 2008, 130, 11828–11833.

    Article  CAS  Google Scholar 

  26. Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938–9939.

    Article  CAS  Google Scholar 

  27. Peng, S.; Sun, S. S. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4155–4158.

    Article  CAS  Google Scholar 

  28. Cheng, K.; Peng, S.; Xu, C. J.; Sun, S. H. Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J. Am. Chem. Soc. 2009, 131, 10637–10644.

    Article  CAS  Google Scholar 

  29. Abbasi, S.; Paul, A.; Shao, W.; Prakash, S. Cationic albumin nanoparticles for enhanced drug delivery to treat breast cancer: Preparation and in vitro assessment. J. Drug Deliv., in press, DIO: 10.1155/2012/686108.

  30. Bareford, L. M.; Swaan, P. W. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliver. Rev. 2007, 59, 748–758.

    Article  CAS  Google Scholar 

  31. Tong, R.; Cheng, J. J. Anticancer polymeric nanomedicines. Polym. Rev. 2007, 47, 345–381.

    Article  CAS  Google Scholar 

  32. Bhirde, A. A.; Kapoor, A.; Liu, G.; Iglesias-Bartolome, R.; Jin, A.; Zhang, G. F.; Xing, R. J.; Lee, S.; Leapman, R. D.; Gutkind, J. S. et al. Nuclear mapping of nanodrug delivery systems in dynamic cellular environments. ACS Nano 2012, 6, 4966–4972.

    Article  CAS  Google Scholar 

  33. Xiong, X. B.; Ma, Z. S.; Lai, R., Lavasanifar, A. The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin. Biomaterials 2010, 31, 757–768.

    Article  CAS  Google Scholar 

  34. Kievit, F. M.; Wang, F. Y.; Fang, C.; Mok, H.; Wang, K.; Silber, J. R.; Ellenbogen, R. G.; Zhang, M. Q. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Control Release 2011, 152, 76–83.

    Article  CAS  Google Scholar 

  35. Huang, J.; Bu, L. H.; Xie, J.; Chen, K.; Cheng, Z.; Li, X. G.; Chen, X. Y. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 2010, 4, 7151–7160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, R., Bhirde, A.A., Wang, S. et al. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 6, 1–9 (2013). https://doi.org/10.1007/s12274-012-0275-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0275-5

Keywords

Navigation