Skip to main content
Log in

Fast and reliable identification of atomically thin layers of TaSe2 crystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Deposition of clean and defect-free atomically thin two-dimensional crystalline flakes on surfaces by mechanical exfoliation of layered bulk materials has proven to be a powerful technique, but it requires a fast, reliable and non-destructive way to identify the atomically thin flakes among a crowd of thick flakes. In this work, we provide general guidelines to identify ultrathin flakes of TaSe2 by means of optical microscopy and Raman spectroscopy. Additionally, we determine the optimal substrates to facilitate the optical identification of atomically thin TaSe2 crystals. Experimental realization and isolation of ultrathin layers of TaSe2 enables future studies on the role of the dimensionality in interesting phenomena such as superconductivity and charge density waves.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  3. Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 2007, 101, 014507.

    Article  Google Scholar 

  4. Staley, N. E.; Wu, J.; Eklund, P.; Liu, Y.; Li, L. J.; Xu, Z. Electric field effect on superconductivity in atomically thin flakes of NbSe2. Phys. Rev. B 2009, 80, 184505.

    Article  Google Scholar 

  5. Khan, J.; Nolen, C. M.; Teweldebrhan, D.; Wickramaratne, D.; Lake, R. K.; Balandin, A. A. Anomalous electron transport in back-gated field-effect transistors with TiTe2 semimetal thin-film channels. Appl. Phys. Lett. 2012, 100, 043109.

    Article  Google Scholar 

  6. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  CAS  Google Scholar 

  7. Teweldebrhan, D.; Goyal, V.; Rahman, M.; Balandin, A. A. Atomically-thin crystalline films and ribbons of bismuth telluride. Appl. Phys. Lett. 2010, 96, 053107.

    Article  Google Scholar 

  8. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  CAS  Google Scholar 

  9. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  10. Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 2010, 49, 4059–4062.

    Article  Google Scholar 

  11. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  12. Castellanos-Gomez, A.; Wojtaszek, M.; Tombros, N.; Agraït, N.; van Wees, B. J.; Rubio-Bollinger, G. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small 2011, 7, 2491–2497.

    CAS  Google Scholar 

  13. Castellanos-Gomez, A.; Poot, M.; Amor-Amorós, A.; Steele, G.; van der Zant, H.; Agraït, N.; Rubio-Bollinger, G. Mechanical properties of freely suspended atomically thin dielectric layers of mica. Nano Res. 2012, 5, 550–557.

    Article  CAS  Google Scholar 

  14. Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.

    Article  CAS  Google Scholar 

  15. Yin, Z. Y.; Li, H.; Li, H.; Jiang L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

    Article  CAS  Google Scholar 

  16. Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.

    Article  CAS  Google Scholar 

  17. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093–11097.

    Article  CAS  Google Scholar 

  18. Zeng, Z. Y.; Sun, T.; Zhu, J. X.; Huang, X.; Yin, Z. Y.; Lu, G; Fan, Z. X.; Yan, Q. Y.; Hng, H. H.; Zhang, H. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 2012, 51, 9052–9056.

    Article  CAS  Google Scholar 

  19. Liu, K.-K.; Zhang, W. J.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y. M.; Zhang, H.; et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

    Article  CAS  Google Scholar 

  20. Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small, in press, DOI: 10.1002/smll.201202919.

  21. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  CAS  Google Scholar 

  22. Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.

    Article  Google Scholar 

  23. Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K. S.; Ferrari, A. C. Rayleigh imaging of graphene and graphene layers. Nano Lett. 2007, 7, 2711–2717.

    Article  CAS  Google Scholar 

  24. Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569–3575.

    Article  CAS  Google Scholar 

  25. Roddaro, S.; Pingue, P.; Piazza, V.; Pellegrini, V.; Beltram, F. The optical visibility of graphene: Interference colors of ultrathin graphite on SiO2. Nano Lett. 2007, 7, 2707–2710.

    Article  CAS  Google Scholar 

  26. Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.

    Article  Google Scholar 

  27. Li, H.; Lu, G.; Yin, Z. Y.; He, Q. Y.; Zhang, Q.; Zhang, H. Optical identification of single-and few-layer MoS2 Sheets. Small 2012, 8, 682–686.

    Article  CAS  Google Scholar 

  28. Sengupta, S.; Solanki, H. S.; Singh, V.; Dhara, S.; Deshmukh, M. M. Electromechanical resonators as probes of the charge density wave transition at the nanoscale in NbSe2. Phys. Rev. B 2010, 82, 155432.

    Article  Google Scholar 

  29. Leininger, P.; Chernyshov, D.; Bosak, A.; Berger, H.; Inosov, D. S. Competing charge density waves and temperature-dependent nesting in 2H-TaSe2. Phys. Rev. B 2011, 83, 233101.

    Google Scholar 

  30. Galvis, J. A.; Rodière, P.; Guillamón, I.; Osorio, M. R.; Rodrigo, J. G.; Cario, L.; Navarro-Moratalla, E.; Coronado, E.; Vieira, S.; Suderow, H. Flat band in superconducting layers of 2H-TaSe2. arXiv:1210.2659.

  31. Nemes-Incze, P.; Osváth, Z.; Kamarás, K.; Biró, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 2008, 46, 1435–1442.

    Article  CAS  Google Scholar 

  32. Castellanos-Gomez, A.; Arroyo, C. R.; Agraït, N.; Rubio-Bollinger, G. Calibration of piezoelectric positioning actuators using a reference voltage-to-displacement transducer based on quartz tuning forks. Microsc. Microanal. 2012, 18, 353–358.

    CAS  Google Scholar 

  33. Moreno-Moreno, M.; Castellanos-Gomez, A.; Rubio-Bollinger, G.; Gomez-Herrero, J.; Agraït, N. Ultralong natural graphene nanoribbons and their electrical conductivity. Small 2009, 5, 924–927.

    Article  CAS  Google Scholar 

  34. Moser, J.; Verdaguer, A.; Jiménez, D.; Barreiro, A.; Bachtold, A. The environment of graphene probed by electrostatic force microscopy. Appl. Phys. Lett. 2008, 92, 123507.

    Article  Google Scholar 

  35. Kvavle, J.; Bell, C.; Henrie, J.; Schultz, S.; Hawkins, A. Improvement to reflective dielectric film color pictures. Opt. Express 2004, 12, 5789–5794.

    Article  CAS  Google Scholar 

  36. McWhan, D. B.; Fleming, R. M.; Moncton, D. E.; DiSalvo, F. J. Reentrant lock-in transition of the charge-density wave in 2H-TaSe2 at high pressure. Phys. Rev. Lett. 1980, 45, 269–272.

    Article  CAS  Google Scholar 

  37. Beal, A. R.; Hughes, H. P.; Liang, W. Y. The reflectivity spectra of some group VA transition metal dichalcogenides. J. Phys. C Solid State Phys. 1975, 8, 4236.

    Article  CAS  Google Scholar 

  38. Wald, G. Human vision and the spectrum. Science 1945, 101, 653–658.

    Article  CAS  Google Scholar 

  39. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 2007, 7, 238–242.

    Article  CAS  Google Scholar 

  40. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136905.

    Article  Google Scholar 

  41. Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.

    Article  Google Scholar 

  42. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  43. Holy, J. A.; Klein, M. V.; McMillan, W. L.; Meyer, S. F. Raman-active lattice vibrations of the commensurate superlattic in 2H-TaSe2. Phys. Rev. Lett. 1976, 37, 1145–1148.

    Article  CAS  Google Scholar 

  44. Tsang, J.; Shafer, M. Raman spectroscopy of intercalated layered structure compounds. Solid State Commun. 1978, 25, 999–1002.

    Article  CAS  Google Scholar 

  45. Li, T.; Galli, G. Electronic Properties of MoS2 Nanoparticles. J. Phys. Chem. C 2007, 111, 16192–16196.

    Article  CAS  Google Scholar 

  46. Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

    Article  Google Scholar 

  47. Koh, Y. K.; Bae, M. H.; Cahill, D. G.; Pop, E. Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano 2011, 5, 269–274.

    Article  CAS  Google Scholar 

  48. Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andres Castellanos-Gomez or Gabino Rubio-Bollinger.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellanos-Gomez, A., Navarro-Moratalla, E., Mokry, G. et al. Fast and reliable identification of atomically thin layers of TaSe2 crystals. Nano Res. 6, 191–199 (2013). https://doi.org/10.1007/s12274-013-0295-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0295-9

Keywords

Navigation