Skip to main content
Log in

Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We present a facile method for producing superhydrophobic nanograss-coated (SNGC) glass surfaces that possess both reduced reflectivity and self-cleaning properties at the air/glass interface. The refractive index of a CaF2 nanograss (NG) layer on a glass substrate, deposited by glancing angle vapor deposition, is 1.04 at 500 nm, which is the second-lowest value ever reported so far. The fluorinated NG layer gives rise to a high water contact angle (>150°) and very efficient cleaning out of dust with water drops. Using the dual functionalities of the SNGC glass, we demonstrate superhydrophobic and antireflective organic photovoltaic cells with excellent power conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye, L.; Zhang, Y.; Zhang, X.; Hu, T.; Ji, R.; Ding, B.; Jiang, B. Sol-gel preparation of SiO2/TiO2/SiO2-TiO2 broadband antireflective coating for solar cell cover glass. Sol. Energy Mater. Sol. Cells 2013, 111, 160–164.

    Article  Google Scholar 

  2. Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Antireflective coatings: A critical, in-depth review. Energy. Environ. Sci. 2011, 4, 3779–3804.

    Article  Google Scholar 

  3. Song, Y. M.; Yu, J. S.; Lee, Y. T. Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement. Opt. Lett. 2010, 35, 276–278.

    Article  Google Scholar 

  4. Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.

    Article  Google Scholar 

  5. Deubener, J.; Helsch, G.; Moiseev, A.; Bornhoft, H. Glasses for solar energy conversion systems. J. Eur. Ceram. Soc. 2009, 29, 1203–1210.

    Article  Google Scholar 

  6. Li, X.; He, J.; Liu, W. Broadband antireflective and water-repellent coatings on glass substrates for self-cleaning photovoltaic cells. Mater. Res. Bull. 2013, 48, 2522–2528.

    Article  Google Scholar 

  7. Verma, L. K.; Sakhuja, M.; Son, J.; Danner, A. J.; Yang, H.; Zeng, H. C.; Bhatia, C. S. Self-cleaning and antireflective packaging glass for solar modules. Renew. Energ. 2011, 36, 2489–2493.

    Article  Google Scholar 

  8. Son, J.; Kundu, S.; Verma, L. K.; Sakhuja, M.; Danner, A. J.; Bhatia, C. S.; Yang, H. A practical superhydrophilic selfcleaning and antireflective surface for outdoor photovoltaic applications. Sol. Energy Mater. Sol. Cells 2012, 98, 46–51.

    Article  Google Scholar 

  9. Hegazy, A. A. Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors. Renew. Energ. 2001, 22, 525–540.

    Article  Google Scholar 

  10. Li, F.; Li, Q.; Kim, H. Spray deposition of electrospun TiO2 nanoparticles with self-cleaning and transparent properties onto glass. Appl. Surf. Sci. 2013, 276, 390–396.

    Article  Google Scholar 

  11. Song, Y.; Nair, R. P.; Zou, M.; Wang, Y. Superhydrophobic surfaces produced by applying a self-assembled monolayer to silicon micro/nano-textured surfaces. Nano. Res. 2009, 2, 143–150.

    Article  Google Scholar 

  12. Park, Y. B.; Im, H.; lm, M.; Choi, Y. K. Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. J. Mater. Chem. 2011, 21, 633–636.

    Article  Google Scholar 

  13. Feng, X.; Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 2006, 18, 3063–3078.

    Article  Google Scholar 

  14. Zhang, X.; Shi, F.; Niu, J.; Jiang, Y. G.; Wang, Z. Q. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem. 2008, 18, 621–633.

    Article  Google Scholar 

  15. Lafuma, A.; Quere, D. Superhydrophobic states. Nat. Mater. 2003, 2, 457–460.

    Article  Google Scholar 

  16. Bravo, J.; Zhai, L.; Wu, Z.; Cohen, R. E.; Rubner, M. F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir 2007 23, 7293–7298.

    Article  Google Scholar 

  17. Li, X.; Du X.; He, J. Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles. Langmuir 2010, 26, 13528–13534.

    Article  Google Scholar 

  18. Lee, D.; Rubner, M. F.; Cohen, R. E. All nanoparticle thin-film coatings. Nano Lett. 2006, 6, 2305–2312.

    Article  Google Scholar 

  19. Liu, Z.; Zhang, X.; Murakami, T.; Fujishima, A. Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties. Sol. Energy Mater. Sol. Cells 2008, 92, 1434–1438.

    Article  Google Scholar 

  20. Ganbavle, V. V.; Bangi, U. K. H.; Latthe, S. S.; Mahadik, S. A.; Rao, A. V. Self-cleaning silica coatings on glass by single step sol-gel route. Surf. Coating Technol. 2011, 205, 5338–5344.

    Article  Google Scholar 

  21. Mahadik, S. A.; Kavale, M. S.; Mukherjee, S. K.; Rao, A. V. Transparent superhydrophobic silica coatings on glass by sol-gel method. Appl. Surf. Sci. 2010, 257, 333–339.

    Article  Google Scholar 

  22. Li, F.; Li, Q.; Kim, H. Spray deposition of electrospun TiO2 nanoparticles with self-cleaning and transparent properties onto glass. Appl. Surf. Sci. 2013, 276, 390–396.

    Article  Google Scholar 

  23. Yabu, H.; Shimomura, M. Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 2005, 17, 5231–5234.

    Article  Google Scholar 

  24. Vogelaar, L.; Lammertink, R. G. H.; Wessling, M. Superhydrophobic surfaces having two-fold adjustable roughness prepared in a single step. Langmuir 2006, 22, 3125–3130.

    Article  Google Scholar 

  25. Verma, L. K.; Sakhuja, M.; Son, J.; Danner, A. J.; Yang, H.; Zeng, H. C.; Bhatia, C. S. Self-cleaning and antireflective packaging glass for solar modules. Renew. Energ. 2011, 36, 2489–2493.

    Article  Google Scholar 

  26. Balu, B.; Breedveld, V.; Hess, D. W. Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 2008, 24, 4785–4790

    Article  Google Scholar 

  27. Li, Y.; Zhang, J.; Zhu, S.; Dong, H.; Jia, F.; Wang, Z.; Sun, Z.; Zhang, L.; Li, Y.; Li, H.; Xu, W.; Yang, B. Biomimetic surfaces for high-performance optics. Adv. Mater. 2009, 21, 4731–4731.

    Google Scholar 

  28. Wang, Y.; Lu, N.; Xu, H.; Shi1, G.; Xu, M.; Lin, X.; Li, H.; Wang, W.; Qi, D.; Lu, Y.; Chi, L. Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings. Nano. Res. 2010, 3, 520–527.

    Article  Google Scholar 

  29. Kennedy, S. R.; Brett, M. J. Porous broadband antireflection coating by glancing angle deposition. Appl. Opt. 2003, 42, 4573–4579.

    Article  Google Scholar 

  30. Jensen, M. O.; Brett, M. J. Porosity engineering in glancing angle deposition thin films. Appl. Phys. A. 2005, 80, 763–768.

    Article  Google Scholar 

  31. Grosso, D.; Boissiere, C.; Sanchez, C. Ultralow-dielectric-constant optical thin films built from magnesium oxyfluoride vesicle-like hollow nanoparticles. Nat. Mater. 2007, 6, 572–575.

    Article  Google Scholar 

  32. Xi, J. Q.; Schubert, M. F.; Kim, J. K.; Schubert, E. F.; Chen, M.; Lin, S. Y.; Liu, W.; Smart, J. A. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photon. 2007, 1, 1176–179.

    Google Scholar 

  33. Walheim, S.; Schaffer, E.; Mlynek, J.; Steiner, U. Nanophase-separated polymer films as high-performance antireflection coatings. Science 1999, 283, 520–522.

    Article  Google Scholar 

  34. Yang, Z. P.; Ci, L.; Bur, J. A.; Lin, S. Y. Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451.

    Article  Google Scholar 

  35. Yoldas, B. E.; Partlow, D. P. Wide spectrum antireflective coating for fused silica and other glasses. Appl. Opt. 1984, 23, 1418–1424.

    Article  Google Scholar 

  36. Poxson, D. J.; Mont, F. W.; Schubert, M. F.; Kim, J. K.; Schubert, E. F. Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition. Appl. Phys. Lett. 2008, 93, 101914.

    Article  Google Scholar 

  37. Sun, Y.; Qiao, R. Facile tuning of superhydrophobic states with Ag nanoplates. Nano. Res. 2008, 1, 1292–1302.

    Google Scholar 

  38. Baklanova, M. R.; Mogilnikov, K. P.; Polovinkin, V. G.; Dultsev, F. N. Determination of pore size distribution in thin films by ellipsometric porosimetry. J. Vac. Sci. Technol. B 2000, 18, 1385–1391.

    Article  Google Scholar 

  39. Park, Y. S.; Suh, D. W.; Choi, K. S.; Yoo, J. S.; Ham, J. Y.; Lee, J. L.; Kim, S. Y. Enhanced efficiency of organic photovoltaic cells with Sr2SiO4:Eu2+ and SrGa2S4:Eu2+ phosphors. Org. Electron. 2013, 14, 1021–1026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo Young Kim or Ho Won Jang.

Electronic supplementary material

Supplementary material, approximately 969 KB.

Supplementary material, approximately 631 KB.

Supplementary material, approximately 462 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwon, H.J., Park, Y., Moon, C.W. et al. Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells. Nano Res. 7, 670–678 (2014). https://doi.org/10.1007/s12274-014-0427-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0427-x

Keywords

Navigation