Skip to main content
Log in

Interconnected graphene/polymer micro-tube piping composites for liquid sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Detection and analysis of volatile organic compounds (VOCs) as pollutants in the atmosphere and liquids are of great significance because of the detrimental effects of VOCs. A polymer-coated graphene micro-tube piping (GMP) structure with a cross-linked and interconnected channel network was synthesized for liquid sensing. By virtue of their unique cross-linked and interconnected channel network configuration, polycrystalline conformation, and the support of a polymer layer, the resistivity of the 3D hollow micro-tubing GMPs was sensitive to strain, ensuring high sensitivity of the liquid sensor (R/R 0 of ∼4 × 103% for pure acetone and R/R 0 of ∼105% for 0.01 wt.% acetone solution). Due to the capillary force, the interfaces of the 3D structures can speed up the penetration of solvents into the polymer, thus promote distinct selectivity within seconds and significantly decrease the response time. Owing to their good selectivity, high sensitivity, rapid response and flexibility, and the ease of use of the sensors and the simplicity of the fabrication processes, the GMP/polymer composites should be a good candidate for liquid sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dewulf, J.; Langenhove, H. V.; Wittmann, G. Analysis of volatile organic compounds using gas chromatography. TrAC Trends Anal. Chem. 2002, 21, 637–646.

    Article  Google Scholar 

  2. Lindinger, C.; Pollien, P.; Ali, S.; Yeretzian, C.; Blank, I.; Märk, T. Unambiguous identification of volatile organic compounds by proton-transfer reaction mass spectrometry coupled with GC/MS. Anal. Chem. 2005, 77, 4117–4124.

    Article  Google Scholar 

  3. de Gouw, J.; Warneke, C. Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom. Rev. 2007, 26, 223–257.

    Article  Google Scholar 

  4. Dan, Y. P.; Lu, Y.; Kybert, N. J.; Luo, Z. T.; Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475.

    Article  Google Scholar 

  5. Mori, M.; Nishimura, H.; Itagaki, Y.; Sadaoka, Y. Potentiometric VOC detection in air using 8YSZ-based oxygen sensor modified with SmFeO3 catalytic layer. Sensor. Actuat. B-Chem. 2009, 142, 141–146.

    Article  Google Scholar 

  6. Wolfrum, E. J.; Meglen, R. M.; Peterson, D.; Sluiter, J. Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sensor. Actuat. B-Chem. 2006, 115, 322–329.

    Article  Google Scholar 

  7. Kreno, L. E.; Hupp, J. T.; Van Duyne, R. P. Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 2010, 82, 8042–8046.

    Article  Google Scholar 

  8. Ji, Q. M.; Yoon, S. B.; Hill, J. P.; Vinu, A.; Yu, J.-S.; Ariga, K. Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. J. Am. Chem. Soc. 2009, 131, 4220–4221.

    Article  Google Scholar 

  9. Sun, B.; Horvat, J.; Kim, H. S.; Kim, W.-S.; Ahn, J.; Wang, G. X. Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C 2010, 114, 18753–18761.

    Article  Google Scholar 

  10. Ariga, K.; Vinu, A.; Yamauchi, Y.; Ji, Q. M.; Hill, J. P. Nanoarchitectonics for mesoporous materials. Bull. Chem. Soc. Jpn. 2012, 85, 1–32.

    Article  Google Scholar 

  11. Ji, Q. M.; Honma, I.; Paek, S.-M.; Akada, M.; Hill, J. P.; Vinu, A.; Ariga, K. Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem. Int. Ed. 2010, 50, 9931–9937.

    Article  Google Scholar 

  12. Minh, V. A.; Tuan, L. A.; Huy, T. Q.; Hung, V. N.; Quy, N. V. Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl. Surf. Sci. 2013, 265, 458–464.

    Article  Google Scholar 

  13. Kosaki, Y.; Izawa, H.; Ishihara, S.; Kawakami, K.; Sumita, M.; Tateyama, Y.; Ji, Q. M.; Krishnan, V.; Hishita, S.; Yamauchi, Y. et al. Nanoporous carbon sensor with cage-in-fiber structure: Highly selective aniline adsorbent toward cancer risk management. ACS Appl. Mater. Interfaces 2013, 5, 2930–2934.

    Article  Google Scholar 

  14. Kida, T.; Harano, H.; Minami, T.; Kishi, S.; Morinaga, N.; Yamazoe, N.; Shimanoe, K. Control of electrode reactions in a mixed-potential-type gas sensor based on a BiCuVOx solid electrolyte. J. Phys. Chem. C 2010, 114, 15141–15148.

    Article  Google Scholar 

  15. Rakow, N. A.; Wendland, M. S.; Trend, J. E.; Poirier, R. J.; Paolucci, D. M.; Maki, S. P.; Lyons, C. S.; Swierczek, M. J. Visual indicator for trace organic volatiles. Langmuir 2010, 26, 3767–3770.

    Article  Google Scholar 

  16. Yoon, J.; Chae, S. K.; Kim, J.-M. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc. 2007, 129, 3038–3039.

    Article  Google Scholar 

  17. Rakow, N. A.; Suslick, K. S. A colorimetric sensor array for odour visualization. Nature 2000, 406, 710–713.

    Article  Google Scholar 

  18. Matveev, B. A.; Gavrilov, G. A.; Evstropov, V. V.; Zotova, N. V.; Karandashov, S. A.; Sotnikova, G. Y.; Stus’, N. M.; Talalakin, G. N.; Malinen, J. Mid-infrared (3–5 μm) LEDs as sources for gas and liquid sensors. Sensor. Actuat. B-Chem. 1997, 39, 339–343.

    Article  Google Scholar 

  19. Fini, J. M. Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 2004, 15, 1120–1128.

    Article  Google Scholar 

  20. Kondoh, J.; Muramatsu, T.; Nakanishi, T.; Matsui, Y.; Shiokawa, S. Development of practical surface acoustic wave liquid sensing system and its application for measurement of Japanese tea. Sensor. Actuat. B-Chem. 2003, 92, 191–198.

    Article  Google Scholar 

  21. Wei, C.; Dai, L. M.; Roy, A.; Tolle, T. B. Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J. Am. Chem. Soc. 2006, 128, 1412–1413.

    Article  Google Scholar 

  22. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  Google Scholar 

  23. Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375.

    Article  Google Scholar 

  24. Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P. Liquid sensing: Smart polymer/CNT composites. Mater. Today. 2011, 14, 340–345.

    Article  Google Scholar 

  25. Pang, H.; Bao, Y.; Xu, L.; Yan, D.-X.; Zhang, W.-Q.; Wang, J.-H.; Li, Z.-M. Double-segregated carbon nanotube-polymer conductive composites as candidates for liquid sensing materials. J. Mater. Chem. A 2013, 1, 4177–4181.

    Article  Google Scholar 

  26. Li, X.; Sun, P. Z.; Fan, L. L.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Cheng, Y.; Zhu, H. W. Multifunctional graphene woven fabrics. Sci. Rep. 2012, 2, 395.

    Google Scholar 

  27. Li, X.; Zhang, R.; Yu, W.; Wang, K.; Wei, J.; Wu, D.; Cao, A.; Li, Z.; Cheng, Y.; Zheng, Q., et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870.

    Google Scholar 

  28. Lee, J. N.; Park, C.; Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544–6554.

    Article  Google Scholar 

  29. Rentenberger, R.; Cayla, A.; Villmow, T.; Jehnichen, D.; Campagne, C.; Rochery, M.; Devaux, E.; Pötschke, P. Multifilament fibres of poly(ɛ-caprolactone)/poly(lactic acid) blends with multiwalled carbon nanotubes as sensor materials for ethyl acetate and acetone. Sensor. Actuat. B-Chem. 2011, 160, 22–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihong Li or Hongwei Zhu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Zhang, H., Wang, Y. et al. Interconnected graphene/polymer micro-tube piping composites for liquid sensing. Nano Res. 7, 869–876 (2014). https://doi.org/10.1007/s12274-014-0448-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0448-5

Keywords

Navigation