Skip to main content
Log in

NIR-induced highly sensitive detection of latent fingermarks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The most commonly found fingermarks at crime scenes are latent and, thus, an efficient method for detecting latent fingermarks is very important. However, traditional developing techniques have drawbacks such as low detection sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we employed fluorescent NaYF4:Yb,Er upconversion nanoparticles (UCNPs), which can fluoresce visible light when excited by 980 nm human-safe near-infrared light, to stain the latent fingermarks on various substrate surfaces. The UCNPs were successfully used as a novel fluorescent label for the detection of latent fingermarks with high sensitivity, low background, high efficiency, and low toxicity on various substrates including non-infiltrating materials (glass, marble, aluminum alloy sheets, stainless steel sheets, aluminum foils, and plastic cards), semi-infiltrating materials (floor leathers, ceramic tiles, wood floor, and painted wood), and infiltrating materials such as various types of papers. This work shows that UCNPs are a versatile fluorescent label for the facile detection of fingermarks on virtually any material, enabling their practical applications in forensic sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sodhi, G. S.; Kaur, J. Powder method for detecting latent fingerprints: A review. Forensic Sci. Int. 2001, 120, 172–176.

    Article  Google Scholar 

  2. Oden, S.; Von Hofsten, B. Detection of fingerprints by the ninhydrin reaction. Nature 1954, 173, 449–450.

    Article  Google Scholar 

  3. Tahtouh, M.; Kalman, J. R.; Reedy, B. J. Synthesis and characterization of four alkyl 2-Cyanoacrylate monomers and their precursors for use in latent fingerprint detection. J. Polym. Sci. Pol. Chem. 2011, 49, 257–277.

    Article  Google Scholar 

  4. Fung, T. C.; Grimwood, K.; Shimmon, R.; Spindler, X.; Maynard, P.; Lennard, C.; Roux, C. Investigation of hydrogen cyanide generation from the cyanoacrylate fuming process used for latent fingermark detection. Forensic Sci. Int. 2011, 212, 143–149.

    Article  Google Scholar 

  5. Kendall, F. G.; Rehn, B. W. J. Rapid method of super glue fuming application for the development of latent fingerprints. Forensic Sci. 1983, 28, 777–780.

    Google Scholar 

  6. Xu, L. R.; Li, Y.; Wu, S. Z.; Liu, X. H.; Su, B. Imaging latent fingerprints by electrochemiluminescence. Angew. Chem. Int. Ed. 2012, 51, 8068–8072.

    Article  Google Scholar 

  7. Li, Y.; Xu, L. R.; Su, B. Aggregation induced emission for the recognition of latent fingerprints. Chem. Commun. 2012, 48, 4109–4111.

    Article  Google Scholar 

  8. Li, Y.; Xu, L. R.; He, Y. Y.; Su, B. Enhancing the visualization of latent fingerprints by electrochemiluminescence of rubrene. Electrochem. Commun. 2013, 33, 92–95.

    Article  Google Scholar 

  9. Li, K.; Qin, W. W.; Li, F.; Zhao, X. C.; Jiang, B. W.; Wang, K.; Deng, S. H.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angew. Chem. Int. Ed. 2013, 52, 11542–11545.

    Article  Google Scholar 

  10. Xu, L. R.; Zhou, Z. Y.; Zhang, C. Z.; He, Y. Y.; Su, B. Electrochemiluminescence imaging of latent fingermarks through the immunodetection of secretions in human perspiration. Chem. Commun. 2014, 50, 9097–9100.

    Article  Google Scholar 

  11. Tan, J.; Xu, L. R.; Li, T.; Su, B.; Wu, J. M. Image-contrast technology based on the electrochemiluminescence of porous silicon and its application in fingerprint visualization. Angew. Chem. Int. Ed. 2014, 53, 9822–9826.

    Article  Google Scholar 

  12. Choi, M. J.; McDonagh, A. M.; Maynard, P.; Roux, C. Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Sci. Int. 2008, 179, 87–97.

    Article  Google Scholar 

  13. Becue, A.; Scoundrianos, A.; Champod, C.; Margot, P. Fingermark detection based on the in situ growth of luminescent nanoparticles-Towards a new generation of multimetal deposition. Forensic Sci. Int. 2008, 179, 39–43.

    Article  Google Scholar 

  14. Hussain, I.; Hussain, S. Z.; Habib-ur-Rehman; Ihsan, A.; Rehman, A.; Khalid, Z. M.; Brust, M.; Cooper, A. I. In situ growth of gold nanoparticles on latent fingerprints-from forensic applications to inkjet printed nanoparticle patterns. Nanoscale 2010, 2, 2575–2578.

    Article  Google Scholar 

  15. Becue, A.; Champod, C.; Margot, P. Use of gold nanoparticles as molecular intermediates for the detection of fingermarks. Forensic Sci. Int. 2007, 168, 169–176.

    Article  Google Scholar 

  16. Jones, B. J.; Reynolds, A. J.; Richardson, M.; Sears, V. G. Nano-scale composition of commercial white powders for development of latent fingerprints on adhesives. Sci. Justice 2010, 50, 150–155.

    Article  Google Scholar 

  17. Sametband, M.; Shweky, I.; Banin, U.; Mandler, D.; Almog, J. Application of nanoparticles for the enhancement of latent fingerprints. Chem. Commun.. 2007, 1142–1144.

    Google Scholar 

  18. Theaker, B. J.; Hudson, K. E.; Rowell, F. J. Doped hydrophobic silica nano- and micro-particles as novel agents for developing latent fingerprints. Forensic Sci. Int. 2008, 174, 26–34.

    Article  Google Scholar 

  19. Dilag, J.; Kobus, H.; Ellis, A. V. Cadmium sulfide quantum dot/chitosan nanocomposites for latent fingermark detection. Forensic Sci. Int. 2009, 187, 97–102.

    Article  Google Scholar 

  20. Gao, F.; Lv, C. F.; Han, J. X.; Li, X. Y.; Wang, Q.; Zhang, J.; Chen, C.; Li, Q.; Sun, X. F.; Zheng, J. C.; et al. CdTe-montmorillonite nanocomposites: Control synthesis, UV radiation-dependent photoluminescence, and enhanced latent fingerprint detection. J. Phys. Chem. C 2011, 115, 21574–21583.

    Article  Google Scholar 

  21. Gao, F.; Han, J.; Lv, C.; Wang, Q.; Zhang, J.; Li, Q.; Bao, L.; Li, X. Application of core-shell-structured CdTe@SiO2 quantum dots synthesized via a facile solution method for improving latent fingerprint detection. J. Nanopart. Res. 2012, 14, 1–11.

    Google Scholar 

  22. Jin, Y. J; Luo, Y. J.; Li, G. P.; Li, J.; Wang, Y. F.; Yang, R. Q.; Lu, W. T. Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection. Forensic Sci. Int. 2008, 179, 34–38.

    Article  Google Scholar 

  23. Wang, Y. F.; Yang, R. Q.; Wang, Y. J.; Shi, Z. X.; Liu, J. J. Application of CdSe nanoparticle suspension for developing latent fingermarks on the sticky side of adhesives. Forensic Sci. Int. 2009, 185, 96–99.

    Article  Google Scholar 

  24. Liu, J. J.; Shi, Z. X.; Yu, Y. C.; Yang, R. Q.; Zuo, S. L. Water-soluble multicolored fluorescent CdTe quantum dots: Synthesis and application for fingerprint developing. J. Colloid Interf. Sci. 2010, 342, 278–282.

    Article  Google Scholar 

  25. Gao, F.; Han, J. X.; Zhang, J.; Li, Q.; Sun, X. F.; Zheng, J. C.; Bao, L. R.; Li, X.; Liu, Z. L. The synthesis of newly modified CdTe quantum dots and their application for improvement of latent fingerprint detection. Nanotechnology 2011, 22, 075705.

    Article  Google Scholar 

  26. Becue, A.; Moret, S.; Champod, C.; Margot, P. Use of quantum dots in aqueous solution to detect blood fingermarks on non-porous surfaces. Forensic Sci. Int. 2009, 191, 36–41.

    Article  Google Scholar 

  27. Chang, E.; Thekkek, N.; Yu, W. W.; Colvin, V. L.; Drezek, R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2006, 2, 1412–1417.

    Article  Google Scholar 

  28. Byrne, S. J.; Williams, Y.; Davies, A.; Corr, S. A.; Rakovich, A.; Gunko, Y. K.; Rakovich, Y. P.; Donegan, J. F.; Volkov, Y. “Jelly dots”: Synthesis and cytotoxicity studies of CdTe quantum dot-gelatin nanocomposites. Small 2007, 3, 1152–1156.

    Article  Google Scholar 

  29. Tsay, J. M.; Michalet, X. New light on quantum dot cytotoxicity. Chem. Biol. 2005, 12, 1159–1161.

    Article  Google Scholar 

  30. Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–173.

    Article  Google Scholar 

  31. Schafer, H.; Haase, M. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808–5829.

    Article  Google Scholar 

  32. Wang, L. Y.; Zhang, Y.; Zhu, Y. Y. One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals. Nano Res. 2010, 3, 317–325.

    Article  Google Scholar 

  33. Xu, W.; Zhu, Y. S.; Chen, X.; Wang, J.; Tao, L.; Xu, S.; Liu, T.; Song, H. W. A novel strategy for improving upconversion luminescence of NaYF4:Yb,Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals. Nano Res. 2013, 6, 795–807.

    Article  Google Scholar 

  34. Deng, M. L.; Wang, L. Y. Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size. Nano Res. 2014, 7, 782–793.

    Article  Google Scholar 

  35. Chen, G.; Chen, F. S.; Liu, X. H.; Ma, W.; Luo, H. M.; Li, J. H.; Ma, R. Z.; Qiu, G. Z. Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion. Nano Res. 2014, 7, 1093–1102.

    Article  Google Scholar 

  36. Wang, J.; Wei, T.; Li, X. Y.; Zhang, B. H.; Wang, J. X.; Huang, C.; Yuan, Q. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. Angew. Chem. Int. Ed. 2014, 53, 1616–1620.

    Article  Google Scholar 

  37. Wang, M.; Abbineni, G.; Clevenger, A.; Mao, C. B.; Xu, S. K. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine: NBM 2011, 7, 710–729.

    Article  Google Scholar 

  38. Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 2010, 135,1839–1854.

    Article  Google Scholar 

  39. Chatterjee, D. K.; Gnanasammandhan, M. K.; Zhang, Y. Small upconverting fluorescent nanoparticles for biomedical applications. Small 2010, 6, 2781–2795.

    Article  Google Scholar 

  40. Wang, M.; Hou, W.; Mi, C. C.; Wang, W. X.; Xu, Z. R.; Teng, H. H.; Mao, C. B.; Xu, S. K. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb,Er upconversion fluorescent nanoparticles and gold nanoparticles Anal. Chem. 2009, 81, 8783–8789.

    Article  Google Scholar 

  41. Ma, R. L.; Bullock, E.; Maynard, P.; Reedy, B.; Shimmon, R.; Lennard, C.; Roux, C.; McDonagh, A. Fingermark detection on non-porous and semi-porous surfaces using NaYF4:Er,Yb up-converter particles. Forensic Sci. Int. 2011, 207, 145–149.

    Article  Google Scholar 

  42. Wang, M.; Mi, C. C.; Wang, W. X.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu, S. K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles. ACS Nano 2009, 3, 1580–1586.

    Article  Google Scholar 

  43. Wang, M.; Mi, C. C.; Zhang, Y. X.; Liu, J. L.; Li, F.; Mao, C. B.; Xu, S. K. NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J. Phys. Chem. C 2009, 113, 19021–19027.

    Article  Google Scholar 

  44. Mai, H. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals. J. Phys. Chem. C 2007, 111, 13721–13729.

    Article  Google Scholar 

  45. Mai, H. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H. Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. C 2007, 111, 13730–13739.

    Article  Google Scholar 

  46. Yi, G. S.; Chow, G. M. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329.

    Article  Google Scholar 

  47. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

    Article  Google Scholar 

  48. Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757–2765.

    Article  Google Scholar 

  49. Wang, L. Y.; Li, Y. D. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 2007, 19, 727–734.

    Article  Google Scholar 

  50. Thoma, R. E.; Insley, H.; Hebert, G. M. Sodium fluoride-lanthanide trifluoride systems. Inorg.Chem. 1966, 5, 1222–1229.

    Article  Google Scholar 

  51. Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.

    Article  Google Scholar 

  52. Thomas, G. L. Physics of fingerprints and their detection. J. Phys. E: Sci. Instrum. 1978, 11, 722–731.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Wang, Mingying Yang or Chuanbin Mao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, M., Yang, M. et al. NIR-induced highly sensitive detection of latent fingermarks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state. Nano Res. 8, 1800–1810 (2015). https://doi.org/10.1007/s12274-014-0686-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0686-6

Keywords

Navigation