Skip to main content
Log in

Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) has been considered a promising metal-free photocatalyst due to its unique photoelectrical properties and thermal/chemical stability. However, its performance suffers from the fast recombination of charge carriers. Herein, we report mesoporous SiC nanofibers with in situ embedded graphitic carbon (SiC NFs-Cx) synthesized via a one-step carbothermal reduction between electrospun carbon nanofibers and Si powders. In the absence of a noble metal co-catalyst, the hydrogen evolution efficiency of SiC NFs-Cx is significantly improved under both simulated solar light (180.2 μmol·g–1·h–1) and visible light irradiation (31.0 μmol·g–1·h–1) in high-pH solution. The efficient simultaneous separation of charge carriers plays a critical role in the high photocatalytic activity. The embedded carbon can swiftly transfer the photogenerated electrons and improve light absorption, whereas the additional hydroxyl anions (OH) in highpH solution can accelerate the trapping of holes. Our results demonstrate that the production of SiC NFs-Cx, which contains exclusively earth-abundant elements, scaled up, and is environmentally friendly, has great potential for practical applications. This work may provide a new pathway for designing stable, lowcost, high efficiency, and co-catalyst-free photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätze, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.

    Article  Google Scholar 

  2. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductorbased photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  Google Scholar 

  3. Ran, J.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earthabundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

    Article  Google Scholar 

  4. Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728.

    Article  Google Scholar 

  5. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  6. Xie, Y. J.; Zhang, X.; Ma, P. J.; Wu, Z. J.; Piao, L. Y. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Res. 2015, 8, 2092–2101.

    Article  Google Scholar 

  7. Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121–14127.

    Article  Google Scholar 

  8. Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175–183.

    Article  Google Scholar 

  9. He, C. Y.; Wu, X. L.; Shen, J. C.; Chu, P. K. High-efficiency electrochemical hydrogen evolution based on surface autocatalytic effect of ultrathin 3C-SiC nanocrystals. Nano Lett. 2012, 12, 1545–1548.

    Article  Google Scholar 

  10. Liu, J. K.; Wen, S. H.; Hou, Y.; Zuo, F.; Beran, G. J. O.; Feng, P. Y. Boron carbides as efficient, metal-free, visiblelight- responsive photocatalysts. Angew. Chem., Int. Ed. 2013, 52, 3241–3245.

    Article  Google Scholar 

  11. Ishikawa, T.; Yamaoka, H.; Harada, Y.; Fujii, T.; Nagasawa, T. A general process for in situ formation of functional surface layers on ceramics. Nature 2002, 416, 64–67.

    Article  Google Scholar 

  12. Masson, R.; Keller, V.; Keller, N. β-SiC alveolar foams as a structured photocatalytic support for the gas phase photocatalytic degradation of methylethylketone. Appl. Catal. B: Environ. 2015, 170–171, 301–311.

    Article  Google Scholar 

  13. Wang, H.; Yu, J. S.; Li, X. D.; Kim, D. P. Inorganic polymer-derived hollow SiC and filled SiCN sphere assemblies from a 3DOM carbon template. Chem. Commun. 2004, 2352–2353.

    Google Scholar 

  14. Xi, G. C.; Liu, Y. K.; Liu, X. Y.; Wang, X. Q.; Qian, Y. T. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures. J. Phys. Chem. B 2006, 110, 14172–14178.

    Article  Google Scholar 

  15. Hao, J. Y.; Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. SiC nanomaterials with different morphologies for photocatalytic hydrogen production under visible light irradiation. Catal. Today 2013, 212, 220–224.

    Article  Google Scholar 

  16. Zhou, W. M.; Yan, L. J.; Wang, Y.; Zhang, Y. F. SiC nanowires: A photocatalytic nanomaterial. Appl. Phys. Lett. 2006, 89, 013105.

    Article  Google Scholar 

  17. Wang, Y. W.; Guo, X. N.; Dong, L. L.; Jin, G. Q.; Wang, Y. Y.; Guo, X. Y. Enhanced photocatalytic performance of chemically bonded SiC-graphene composites for visiblelight-driven overall water splitting. Int. J. Hydrogen Energy 2013, 38, 12733–12738.

    Article  Google Scholar 

  18. Wang, M. M.; Chen, J. J.; Liao, X.; Liu, Z. X.; Zhang, J. D.; Gao, L.; Li, Y. Highly efficient photocatalytic hydrogen production of platinum nanoparticle-decorated SiC nanowires under simulated sunlight irradiation. Int. J. Hydrogen Energy 2014, 39, 14581–14587.

    Article  Google Scholar 

  19. Peng, Y.; Guo, Z. N.; Yang, J. J.; Wang, D.; Yuan, W. X. Enhanced photocatalytic H2 evolution over micro-SiC by coupling with CdS under visible light irradiation. J. Mater. Chem. A 2014, 2, 6296–6300.

    Article  Google Scholar 

  20. Zhou, X. F.; Liu, Y. J.; Li, X.; Gao, Q. Z.; Liu, X. T.; Fang, Y. P. Topological morphology conversion towards SnO2/SiC hollow sphere nanochains with efficient photocatalytic hydrogen evolution. Chem. Commun. 2014, 1070–1073.

    Google Scholar 

  21. Hao, J. Y.; Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Int. J. Hydrogen Energy 2012, 37, 15038–15044.

    Article  Google Scholar 

  22. Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

    Article  Google Scholar 

  23. Park, Y.; Kim, W.; Park, H.; Tachikawa, T.; Majima, T.; Choi, W. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B: Environ. 2009, 91, 355–361.

    Article  Google Scholar 

  24. Wu, N.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Han, C. Flexible N-doped TiO2/C ultrafine fiber mat and its photocatalytic activity under simulated sunlight. Appl. Surf. Sci. 2014, 319, 136–142.

    Article  Google Scholar 

  25. Han, S. C.; Hu, L. F.; Liang, Z. Q.; Wageh, S.; Al-Ghamdi, A. A.; Chen, Y. S.; Fang, X. S. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 2014, 24, 5719–5727.

    Article  Google Scholar 

  26. Yang, J. J.; Zeng, X. P.; Chen, L. J.; Yuan, W. X. Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light. Appl. Phys. Lett. 2013, 102, 083101.

    Article  Google Scholar 

  27. Yang, T.; Chang, X. W.; Chen, J. H.; Chou, K. C.; Hou, X. M. B-doped 3C-SiC nanowires with a finned microstructure for efficient visible light-driven photocatalytic hydrogen production. Nanoscale 2015, 7, 8955–8961.

    Article  Google Scholar 

  28. Gao, Y. T.; Wang, Y. Q.; Wang, Y. X. Photocatalytic hydrogen evolution from water on SiC under visible light irradiation. React. Kinet. Catal. Lett. 2007, 91, 13–19.

    Article  Google Scholar 

  29. Zhang, Y. L.; Xia, T.; Wallenmeyer, P.; Harris, C. X.; Peterson, A. A.; Corsiglia, G. A.; Murowchick, J.; Chen, X. B. Photocatalytic hydrogen generation from pure water using silicon carbide nanoparticles. Energy Technol. 2014, 2, 183–187.

    Article  Google Scholar 

  30. Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrovic, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.

    Article  Google Scholar 

  31. Ye, H.; Titchenal N.; Gogotsi. Y.; Ko, F. SiC nanowires synthesized from electrospun nanofiber templates. Adv. Mater. 2005, 17, 1531–1535.

    Article  Google Scholar 

  32. Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

    Article  Google Scholar 

  33. Ma, J.; Li, G. Y.; Chu, Z. Y.; Li, X. D.; Li, Y. H.; Hu, T. J. Microstructure and growth mechanism of multi-layer graphene standing on polycrystalline SiC microspheres. Carbon 2014, 69, 634–637.

    Article  Google Scholar 

  34. Zhang, Y.; Zang, J. B.; Dong, L.; Cheng, X. Z.; Zhao, Y. L.; Wang, Y. H. A Ti-coated nano-SiC supported platinum electrocatalyst for improved activity and durability in direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 10146–10153.

    Article  Google Scholar 

  35. Wang, H.; Zhou, Q. J.; Jian, K.; Shao, C. W.; Zhu, Y. H. Preparation of ordered porous ceramic joint on C/SiC composites and its joining technique. J. Inorg. Mater. 2013, 28, 763–768.

    Article  Google Scholar 

  36. Wang, B.; Wang, Y. D.; Lei, Y. P.; Wu, N.; Gou, Y. Z.; Han, C.; Fang, D. Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A 2014, 2, 20873–20881.

    Article  Google Scholar 

  37. Shi, Y. F.; Zhang, F.; Hu Y. S.; Sun, X. H.; Zhang, Y. C.; Lee, H. I.; Chen, L. Q.; Stucky, G. D. Low-temperature pseudomorphic transformation of ordered hierarchical macromesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction. J. Am. Chem. Soc. 2010, 132, 5552–5553.

    Article  Google Scholar 

  38. Rowland, C. E.; Hannah, D. C.; Demortière, A.; Yang, J. H.; Cook, R. E.; Prakapenka, V. B.; Kortshagen, U.; Schaller, R. D. Silicon nanocrystals at elevated temperatures: Retention of photoluminescence and diamond silicon to β-silicon carbide phase transition. ACS Nano 2014, 8, 9219–9223.

    Article  Google Scholar 

  39. Wen, G. Z.; Zeng, X. B.; Liao, W. G.; Cao, C. C. Crystallization mechanism of silicon quantum dots upon thermal annealing of hydrogenated amorphous Si-rich silicon carbide films. Thin Solid Films 2014, 552, 18–23.

    Article  Google Scholar 

  40. Yin, L. W.; Bando, Y.; Zhu, Y. C.; Li, Y. B. Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si3N4) single-crystalline nanobelts. Appl. Phys. Lett. 2003, 83, 3584–3586.

    Article  Google Scholar 

  41. Zhang, L. G.; Jin, H.; Yang, W. Y.; Xie, Z. P.; Miao, H. Z.; An, L. Optical properties of single-crystalline α-Si3N4 nanobelts. Appl. Phys. Lett. 2005, 86, 061908.

    Article  Google Scholar 

  42. Cuong, D. V.; Truong-Phuoc, L.; Tran-Thanh, T.; Nhut, J. M.; Nguyen-Dinh, L.; Janowska, I.; Begin, D.; Pham-Huu, C. Nitrogen-doped carbon nanotubes decorated silicon carbide as a metal-free catalyst for partial oxidation of H2S. Appl. Catal. A: Gen. 2014, 482, 397–406.

    Article  Google Scholar 

  43. Wu, X. L.; Xiong, S. J.; Zhu, J.; Wang, J.; Shen, J. C.; Chu, P. K. Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence. Nano Lett. 2009, 9, 4053–4060.

    Article  Google Scholar 

  44. Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. 3D interconnected networks constructed by in situ growth of N-doped graphene/carbon nanotubes on cobalt-containing carbon nanofibers for enhanced oxygen reduction. Nano Res., in press, 2009 DOI 10.1007/s12274-015-0911-y.

    Google Scholar 

  45. Cheng, Y. L.; Zhang, J. F.; Zhang, Y. F.; Chen, X. L.; Wang, Y.; Ma, H. M.; Cao, X. Q. Preparation of hollow carbon and silicon carbide fibers with different cross-sections by using electrospun fibers as templates. Eur. J. Inorg. Chem. 2009, 2009, 4248–4254.

    Article  Google Scholar 

  46. Cheng, G. M.; Chang, T. H.; Qin, Q. Q.; Huang, H. C.; Zhu, Y. Mechanical properties of silicon carbide nanowires: Effect of size-dependent defect density. Nano Lett. 2014, 14, 754–758.

    Article  Google Scholar 

  47. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619.

    Article  Google Scholar 

  48. Liu, J. M.; Zhang, Q. C.; Yang, J. C.; Ma, H. Y.; Tade, M. O.; Wang, S. B.; Liu, J. Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem. Commun. 2014, 50, 13971–13974.

    Article  Google Scholar 

  49. Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884.

    Article  Google Scholar 

  50. Sun, Z. H.; Guo, J. J.; Zhu, S. M.; Mao, L.; Ma, J.; Zhang, D. A high-performance Bi2WO6-graphene photocatalyst for visible light-induced H2 and O2 generation. Nanoscale 2014, 6, 2186–2193.

    Article  Google Scholar 

  51. Seong, H. K.; Choi, H. J.; Lee, S. K.; Lee, J. I.; Choi, D. J. Optical and electrical transport properties in silicon carbide nanowires. Appl. Phys. Lett. 2004, 85, 1256–1258.

    Article  Google Scholar 

  52. Li, Z. J.; Zhao, J.; Zhang, M.; Xia, J. Y.; Meng, A. L. SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res. 2014, 7, 462–472.

    Article  Google Scholar 

  53. Yu, J. G.; Dai, G. P.; Huang, B. B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J. Phys. Chem. C 2009, 113, 16394–16401.

    Article  Google Scholar 

  54. Jiao, Z. F.; Guo, X. N.; Zhai, Z. Y.; Jin, G. Q.; Wang, X. M.; Guo, X. Y. The enhanced catalytic performance of Pd/SiC for the hydrogenation of furan derivatives at ambient temperature under visible light irradiation. Catal. Sci. Technol. 2014, 4, 2494–2498.

    Article  Google Scholar 

  55. Robinson, V. S.; Fisher, T. S.; Michel, J. A.; Lukehart, C. M. Work function reduction of graphitic nanofibers by potassium intercalation. App. Phys. Lett. 2005, 87, 061501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingde Wang or Yongpeng Lei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, Y., Lei, Y. et al. Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Res. 9, 886–898 (2016). https://doi.org/10.1007/s12274-015-0971-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0971-z

Keywords

Navigation