Skip to main content
Log in

Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x /g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Novel SnO2–x /g-C3N4 heterojunction nanocomposites composed of reduced SnO2–x nanoparticles and exfoliated g-C3N4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C3N4 nanosheets was prevented by small, well-dispersed SnO2–x nanoparticles. The ultraviolet–visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO2 or g-C3N4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetry and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO2–x exhibited the highest photocurrent density of 0.0468 mA·cm–2, which is 33.43 and 5.64 times larger than that of pure SnO2 and g-C3N4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min−1 for the heterojunction containing 27.4 wt.% SnO2–x , which is 32.28 and 5.79 times higher than that of pure SnO2 and g-C3N4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO2–x content and the compact structure of the junction between the SnO2–x nanoparticles and the g-C3N4 nanosheets, which inhibits the recombination of photogenerated electrons and holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

    Article  Google Scholar 

  2. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

  3. Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401.

    Article  Google Scholar 

  4. Ohno, T.; Murakami, N.; Koyanagi, T.; Yang, Y. Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J. CO2 Utilization 2014, 6, 17–25.

    Article  Google Scholar 

  5. Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465.

    Article  Google Scholar 

  6. Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

    Article  Google Scholar 

  7. Sridharan, K.; Jang, E.; Park, T. J. Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B: Environ. 2013, 142–143, 718–728.

    Article  Google Scholar 

  8. Liu, W.; Wang, M. L.; Xu, C. X.; Chen, S. F. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem. Eng. J. 2012, 209, 386–393.

    Article  Google Scholar 

  9. Yan, S. C.; Lv, S. B.; Li, Z. S.; Zou, Z. G. Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 2010, 39, 1488–1491.

    Article  Google Scholar 

  10. Zang, Y. P.; Li, L. P.; Li, X. G.; Lin, R.; Li, G. S. Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J. 2014, 246, 277–286.

    Article  Google Scholar 

  11. Belhadi, A.; Boumaza, S.; Trari, M. Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system. Appl. Energy 2011, 88, 4490–4495.

    Article  Google Scholar 

  12. Huang, H.; Gong, H.; Chow, C. L.; Guo, J.; White, T. J.; Tse, M. S.; Tan, O. K. Low-temperature growth of SnO2 nanorod arrays and tunable n–p–n sensing response of a ZnO/SnO2 heterojunction for exclusive hydrogen sensors. Adv. Funct. Mater. 2011, 21, 2680–2686.

    Article  Google Scholar 

  13. Wang, Y. J.; Tian, J. J.; Fei, C. B.; Lv, L. L.; Liu, X. G.; Zhao, Z. X.; Cao, G. Z. Microwave-assisted synthesis of SnO2 nanosheets photoanodes for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 25931–25938.

    Article  Google Scholar 

  14. Uddin, M. T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Servant, L.; Muller, M. M.; Kleebe, H. J.; Ziegler, J.; Jaegermann, W. Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 2012, 51, 7764–7773.

    Article  Google Scholar 

  15. Yin, R.; Luo, Q. Z.; Wang, D. S.; Sun, H. T.; Li, Y. Y.; Li, X. Y.; An, J. SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity. J. Mater. Sci. 2014, 49, 6067–6073.

    Article  Google Scholar 

  16. Li, Q.; He, Y.; Peng, R. F. One-step synthesis of SnO2 nanoparticles-loaded graphitic carbon nitride and their application in thermal decomposition of ammonium perchlorate. New J. Chem. 2015, 39, 8703–8707.

    Article  Google Scholar 

  17. Anise, A.; Aziz, H. Y. A simple large-scale method for preparation of g-C3N4/SnO2 nanocomposite as visiblelight-driven photocatalyst for degradation of an organic pollutant. Mater. Express 2015, 5, 309–318.

    Article  Google Scholar 

  18. Chen, X.; Zhou, B. H.; Yang, S. L.; Wu, H. S.; Wu, Y. X.; Wu, L. D.; Pan, J.; Xiong, X. In situ construction of an SnO2/g-C3N4 heterojunction for enhanced visible-light photocatalytic activity. RSC Adv. 2015, 5, 68953–68963.

    Article  Google Scholar 

  19. Chen, L. Y.; Zhang, W. D. A simple strategy for the preparation of g-C3N4/SnO2 nanocomposite photocatalysts. Sci. Adv. Mater. 2014, 6, 1091–1098.

    Google Scholar 

  20. Li, G. S.; Lian, Z. C.; Li, X.; Xu, Y. Y.; Wang, W. C.; Zhang, D. Q.; Tian, F. H.; Li, H. X. Ionothermal synthesis of black Ti3+-doped single-crystal TiO2 as an active photocatalyst for pollutant degradation and H2 generation. J. Mater. Chem. A 2015, 3, 3748–3756.

    Article  Google Scholar 

  21. Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030.

    Article  Google Scholar 

  22. Long, J. L.; Xue, W. W.; Xie, X. Q.; Gu, Q.; Zhou, Y. G.; Chi, Y. W.; Chen, W. K.; Ding, Z. X.; Wang, X. X. Sn2+ dopant induced visible-light activity of SnO2 nanoparticles for H2 production. Catal. Commun. 2011, 16, 215–219.

    Article  Google Scholar 

  23. Fan, C. M.; Peng, Y.; Zhu, Q.; Lin, L.; Wang, R. X.; Xu, A. W. Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2-x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. J. Phys. Chem. C 2013, 117, 24157–24166.

    Article  Google Scholar 

  24. He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Solar Energy Mater. Solar Cells 2015, 137, 175–184.

    Article  Google Scholar 

  25. He, Y. R.; Yan, F. F.; Yu, H. Q.; Yuan, S. J.; Tong, Z. H.; Sheng, G. P. Hydrogen production in a light-driven photoelectrochemical cell. Appl. Energy 2014, 113, 164–168.

    Article  Google Scholar 

  26. Li, H.; Chen, J. Q.; Xia, Z. B.; Xing, J. H. Microwaveassisted preparation of self-doped TiO2 nanotube arrays for enhanced photoelectrochemical water splitting. J. Mater. Chem. A 2015, 3, 699–705.

    Article  Google Scholar 

  27. Song, K. C.; Kang, Y. Preparation of high surface area tin oxide powders by a homogeneous precipitation method. Mater. Lett. 2000, 42, 283–289.

    Article  Google Scholar 

  28. Wang, X. C.; Chen, X. F.; Thomas, A.; Fu, X. Z.; Antonietti, M. Metal-containing carbon nitride compounds: A new functional organic–metal hybrid material. Adv. Mater. 2009, 21, 1609–1612.

    Article  Google Scholar 

  29. Cui, Y. J.; Zhang, J. S.; Zhang, G. G.; Huang, J. H.; Liu, P.; Antonietti, M.; Wang, X. C. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J. Mater. Chem. 2011, 21, 13032–13039.

    Article  Google Scholar 

  30. Ghosh, M.; Pralong, V.; Wattiaux, A.; Sleight, A. W.; Subramanian, M. A. Tin (II) doped anatase (TiO2) nanoparticles: A potential route to “greener” yellow pigments. Chem.—Asian J. 2009, 4, 881–885.

    Article  Google Scholar 

  31. Sun, L. M.; Zhao, X.; Jia, C. J.; Zhou, Y. X.; Cheng, X. F.; Li, P.; Liu, L.; Fan, W. L. Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: Investigation based on experimental and theoretical studies. J. Mater. Chem. 2012, 22, 23428–23438.

    Article  Google Scholar 

  32. Li, B. X.; Xie, Y.; Jing, M.; Rong, G. X.; Tang, Y. C.; Zhang, G. Z. In2O3 hollow microspheres: Synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 2006, 22, 9380–9385.

    Article  Google Scholar 

  33. Gan, J. Y.; Lu, X. H.; Wu, J. H.; Xie, S. L.; Zhai, T.; Yu, M. H.; Zhang, Z. S.; Mao, Y. C.; Wang, S. C. I.; Shen, Y. et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep. 2013, 3, 1021.

    Google Scholar 

  34. Zhao, Z.; Zhang, X. Y.; Zhang, G. Q.; Liu, Z. Y.; Qu, D.; Miao, X.; Feng, P. Y.; Sun, Z. C. Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res. 2015, 8, 4061–4071.

    Article  Google Scholar 

  35. Li, T. T.; Zhao, L. H.; He, Y. M.; Cai, J.; Luo, M. F.; Lin, J. J. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B: Environ. 2013, 129, 255–263.

    Article  Google Scholar 

  36. Li, K.; Gao, S. M.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 9023–9030.

    Article  Google Scholar 

  37. Wang, H. K.; Dou, K. P.; Teoh, W. Y.; Zhan, Y. W.; Hung, T. F.; Zhang, F. H.; Xu, J. Q.; Zhang, R. Q.; Rogach, A. L. Engineering of facets, band structure, and gas-sensing properties of hierarchical Sn2+-doped SnO2 nanostructures. Adv. Funct. Mater. 2013, 23, 4847–4853.

    Google Scholar 

  38. Li, N.; Du, K.; Liu, G.; Xie, Y. P.; Zhou, G. M.; Zhu, J.; Li, F.; Cheng, H. M. Effects of oxygen vacancies on the electrochemical performance of tin oxide. J. Mater. Chem. A 2013, 1, 1536–1539.

    Article  Google Scholar 

  39. Han, Q.; Wang, B.; Zhao, Y.; Hu, C. G.; Qu, L. T. A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 11433–11437.

    Google Scholar 

  40. Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

    Article  Google Scholar 

  41. Li, X. F.; Zhang, J.; Shen, L. H.; Ma, Y. M.; Lei, W. W.; Cui, Q. L.; Zou, G. T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A 2009, 94, 387–392.

    Article  Google Scholar 

  42. Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 2011, 115, 7355–7363.

    Article  Google Scholar 

  43. Yu, J. G.; Wang, B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B: Environ. 2010, 94, 295–302.

    Article  Google Scholar 

  44. Bai, X. J.; Wang, L.; Zong, R. L.; Lv, Y. H.; Sun, Y. Q.; Zhu, Y. F. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir 2013, 29, 3097–3105.

    Article  Google Scholar 

  45. Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/nitrogendoped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.

    Article  Google Scholar 

  46. Wei, Z.; Liu, Y. F.; Wang, J.; Zong, R. L.; Yao, W. Q.; Wang, J.; Zhu, Y. F. Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies. Nanoscale 2015, 7, 13943–13950.

    Article  Google Scholar 

  47. Cheng, X. W.; Liu, H. L.; Chen, Q. H.; Li, J. J.; Wang, P. Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode. Electrochim. Acta 2013, 108, 203–210.

    Article  Google Scholar 

  48. Zhang, J. Y.; Wang, Y. H.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/ g-C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324.

    Article  Google Scholar 

  49. Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal. B: Environ. 2014, 144, 885–892.

    Article  Google Scholar 

  50. Bai, Y.; Wang, P. Q.; Liu, J. Y.; Liu, X. J. Enhanced photocatalytic performance of direct Z-scheme BiOCl–g-C3N4 photocatalysts. RSC Adv. 2014, 4, 19456–19461.

    Article  Google Scholar 

  51. He, Y. M.; Zhang, L. H.; Wang, X. X.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Weng, W. Z.; Wan, H. L.; Fan, M. H. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation. RSC Adv. 2014, 4, 13610–13619.

    Article  Google Scholar 

  52. Li, Z. H.; Xie, Z. P.; Zhang, Y. F.; Wu, L.; Wang, X. X.; Fu, X. Z. Wide band gap p-block metal oxyhydroxide InOOH: A new durable photocatalyst for benzene degradation. J. Phys. Chem. C 2007, 111, 18348–18352.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanmin Gao or Jun Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Zeng, X., Gao, S. et al. Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x /g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res. 9, 1969–1982 (2016). https://doi.org/10.1007/s12274-016-1088-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1088-8

Keywords

Navigation