Skip to main content
Log in

Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) crystals have a multitude of forms, including semi-metals, semiconductors, and insulators, which are ideal for assembling isolated 2D atomic materials to create van der Waals (vdW) heterostructures. Recently, artificially-stacked materials have been considered promising candidates for nanoelectronic and optoelectronic applications. In this study, we report the vertical integration of layered structures for the fabrication of prototype non-volatile memory devices. A semiconducting-tungsten-disulfide-channel-based memory device is created by sandwiching high-density-of-states multi-layered graphene as a carrier-confining layer between tunnel barriers of hexagonal boron nitride (hBN) and silicon dioxide. The results reveal that a memory window of up to 20 V is opened, leading to a high current ratio (>103) between programming and erasing states. The proposed design combination produced layered materials that allow devices to attain perfect retention at 13% charge loss after 10 years, offering new possibilities for the integration of transparent, flexible electronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  2. Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074–4099.

    Article  Google Scholar 

  3. Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

    Article  Google Scholar 

  4. Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

    Article  Google Scholar 

  5. Mishchenko, A.; Tu, J. S.; Cao, Y.; Gorbachev, R. V.; Wallbank, J. R.; Greenaway, M. T.; Morozov, V. E.; Morozov, S. V.; Zhu, M. J.; Wong, S. L. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 2014, 9, 808–813.

    Article  Google Scholar 

  6. Li, D.; Wang, X. J.; Zhang, Q. C.; Zou, L. P.; Xu, X. F.; Zhang, Z. X. Nonvolatile floating-gate memories based on stacked black phosphorus–boron nitride–MoS2 heterostructures. Adv. Funct. Mater. 2015, 25, 7360–7365.

    Article  Google Scholar 

  7. Choi, M. S.; Lee, G. H.; Yu, Y. J.; Lee, D. Y.; Lee, S. H.; Kim, P.; Hone, J.; Yoo, W. J. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 2013, 4, 1624.

    Article  Google Scholar 

  8. Wang, X. M.; Xie, W. G.; Xu, J. B. Graphene based nonvolatile memory devices. Adv. Mater. 2014, 26, 5496–5503.

    Article  Google Scholar 

  9. Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246–3252.

    Article  Google Scholar 

  10. Zhang, E. Z.; Wang, W. Y.; Zhang, C.; Jin, Y. B.; Zhu, G. D.; Sun, Q.-Q.; Zhang, D. W.; Zhou, P.; Xiu, F. X. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 2015, 9, 612–619.

    Article  Google Scholar 

  11. Wang, J. L.; Zou, X. M.; Xiao, X. H.; Xu, L.; Wang, C. L.; Jiang, C. Z.; Ho, J. C.; Wang, T.; Li, J. C.; Liao, L. Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 2015, 11, 208–213.

    Article  Google Scholar 

  12. Lee, J.; Min, S.-W.; Lee, H. S.; Yi, Y. J.; Im, S. MoS2 nanosheet channel and guanine DNA-base charge injection layer for high performance memory transistors. J. Mater. Chem. C 2014, 2, 5411–5416.

    Article  Google Scholar 

  13. Cao, W.; Kang, J. H.; Bertolazzi, S.; Kis, A.; Banerjee, K. Can 2D-nanocrystals extend the lifetime of floating-gate transistor based nonvolatile memory? IEEE T. Electron Dev. 2014, 61, 3456–3464.

    Article  Google Scholar 

  14. Hong, A. J.; Song, E. B.; Yu, H. S.; Allen, M. J.; Kim, J.; Fowler, J. D.; Wassei, J. K.; Park, Y.; Wang, Y.; Zou, J. et al. Graphene flash memory. ACS Nano 2011, 5, 7812–7817.

    Article  Google Scholar 

  15. Young, A. F.; Dean, C. R.; Meric, I.; Sorgenfrei, S.; Ren, H.; Watanabe, K.; Taniguchi, T.; Hone, J.; Shepard, K. L.; Kim, P. Electronic compressibility of layer-polarized bilayer graphene. Phys. Rev. B 2012, 85, 235458.

    Article  Google Scholar 

  16. Lee, G.-H.; Yu, Y.-J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.

    Article  Google Scholar 

  17. Osada, M.; Sasaki, T. Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 2012, 24, 210–228.

    Article  Google Scholar 

  18. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  Google Scholar 

  19. Sik Hwang, W.; Remskar, M.; Yan, R. S.; Protasenko, V.; Tahy, K.; Doo Chae, S.; Zhao, P.; Konar, A.; Xing, H.; Seabaugh, A. et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 2012, 101, 013107.

    Article  Google Scholar 

  20. Braga, D.; Gutiérrez Lezama, I.; Berger, H.; Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 2012, 12, 5218–5223.

    Article  Google Scholar 

  21. Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

    Article  Google Scholar 

  22. Huo, N. J.; Kang, J.; Wei, Z. M.; Li, S.-S.; Li, J. B.; Wei, S.-H. Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025–7031.

    Article  Google Scholar 

  23. Liu, L. T.; Bala Kumar, S.; Ouyang, Y. J.; Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE T. Electron Dev. 2011, 58, 3042–3047.

    Article  Google Scholar 

  24. Brainard, W. A. The Thermal Stability and Friction of the Disulfides, Diselenides, and Ditellurides of Molybdenum and Tungsten in Vacuum (10–9 to 10–6 Torr). NASA, Washington, 1969.

    Google Scholar 

  25. Ballif, C.; Regula, M.; Schmid, P. E.; Remškar, M.; Sanjinés, R.; Lévy, F. Preparation and characterization of highly oriented, photoconducting WS2 thin films. Appl. Phys. A 1996, 62, 543–546.

    Google Scholar 

  26. Zhu, W. J.; Perebeinos, V.; Freitag, M.; Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 2009, 80, 235402.

    Article  Google Scholar 

  27. Kumar, J.; Kuroda, M. A.; Bellus, M. Z.; Han, S.-J.; Chiu, H.-Y. Full-range electrical characteristics of WS2 transistors. Appl. Phys. Lett. 2015, 106, 123508.

    Article  Google Scholar 

  28. Hwan Lee, S.; Lee, D.; Sik Hwang, W.; Hwang, E.; Jena, D.; Jong Yoo, W. High-performance photocurrent generation from two-dimensional WS2 field-effect transistors. Appl. Phys. Lett. 2014, 104, 193113.

    Article  Google Scholar 

  29. Qiu, D. R.; Kim, E. K. Electrically tunable and negative Schottky barriers in multi-layered graphene/MoS2 heterostructured transistors. Sci. Rep. 2015, 5, 13743.

    Article  Google Scholar 

  30. Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641.

    Article  Google Scholar 

  31. Chen, M. K.; Nam, H.; Wi, S.; Priessnitz, G.; Gunawan, I. M.; Liang, X. G. Multibit data storage states formed in plasmatreated MoS2 transistors. ACS Nano 2014, 8, 4023–4032.

    Article  Google Scholar 

  32. Withers, F.; Bointon, T. H.; Hudson, D. C.; Craciun, M. F.; Russo, S. Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment. Sci. Rep. 2014, 4, 4967.

    Article  Google Scholar 

  33. Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Shehzad, M. A.; Seo, Y.; Park, J. H.; Hwang, C.; Eom, J. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 2015, 5, 10699.

    Article  Google Scholar 

  34. Ovchinnikov, D.; Allain, A.; Huang, Y.-S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174–8181.

    Article  Google Scholar 

  35. Brewer, J.; Gill, M. Nonvolatile Memory Technologies with Emphasis on Flash; Wiley-IEEE Press: Piscataway, NJ, 2008.

    Google Scholar 

  36. Yan, R. S.; Zhang, Q.; Li, W.; Calizo, I.; Shen, T.; Richter, C. A.; Hight-Walker, A. R.; Liang, X. L.; Seabaugh, A.; Jena, D. et al. Determination of graphene work function and graphene-insulator-semiconductor band alignment by internal photoemission spectroscopy. Appl. Phys. Lett. 2012, 101, 022105.

    Article  Google Scholar 

  37. Powers, M. J.; Benjamin, M. C.; Porter, L. M.; Nemanich, R. J.; Davis, R. F.; Cuomo, J. J.; Doll, G. L.; Harris, S. J. Observation of a negative electron affinity for boron nitride. Appl. Phys. Lett. 1995, 67, 3912–3914.

    Article  Google Scholar 

  38. Schroder, D. K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons: Hoboken, NJ, 2006.

    Google Scholar 

  39. Lenzlinger, M.; Snow, E. H. Fowler-nordheim tunneling into thermally grown SiO2. J. Appl. Phys. 1969, 40, 278–283.

    Article  Google Scholar 

  40. Han, S.-T.; Zhou, Y.; Roy, V. A. L. Towards the development of flexible non-volatile memories. Adv. Mater. 2013, 25, 5425–5449.

    Article  Google Scholar 

  41. Xu, Y.-N.; Ching, W. Y. Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B 1991, 44, 7787–7798.

    Article  Google Scholar 

  42. Jung, J.; Raoux, A.; Qiao, Z. H.; MacDonald, A. H. Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Phys. Rev. B 2014, 89, 205414.

    Article  Google Scholar 

  43. Kharche, N.; Nayak, S. K. Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 2011, 11, 5274–5278.

    Article  Google Scholar 

  44. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: New Jersey, 2006.

    Book  Google Scholar 

  45. Qiu, D. R.; Lee, D. U.; Park, C. S.; Lee, K. S.; Kim, E. K. Transport properties of unrestricted carriers in bridge-channel MoS2 field-effect transistors. Nanoscale 2015, 7, 17556–17562.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Kyu Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, D., Lee, D.U., Lee, K.S. et al. Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures. Nano Res. 9, 2319–2326 (2016). https://doi.org/10.1007/s12274-016-1118-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1118-6

Keywords

Navigation