Skip to main content
Log in

Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon-based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF·cm–2) and energy density (4.5 mWh·cm–3) at a scan rate of 10 mV·s–1. Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  2. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    Article  Google Scholar 

  3. Lin, T. Q.; Chen, I.-W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

    Article  Google Scholar 

  4. Jiang, H.; Lee, P. S.; Li, C. Z. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41–53.

    Article  Google Scholar 

  5. Wei, L.; Yushin, G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 2012, 1, 552–565.

    Article  Google Scholar 

  6. Wei, L.; Sevilla, M.; Fuertes, A. B.; Mokaya, R.; Yushin, G. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv. Energy Mater. 2011, 1, 356–361.

    Article  Google Scholar 

  7. Tian, X. C.; Shi, M. Z.; Xu, X.; Yan, M. Y.; Xu, L.; Minhas-Khan, A.; Han, C. H.; He, L.; Mai, L. Q. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities. Adv. Mater. 2015, 27, 7476–7482.

    Article  Google Scholar 

  8. Liu, W. W.; Lu, C. X.; Wang, X. L.; Tay, R. Y.; Tay, B. K. High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. ACS Nano 2015, 9, 1528–1542.

    Article  Google Scholar 

  9. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

    Article  Google Scholar 

  10. Wei, L.; Nitta, N.; Yushin, G. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices. ACS Nano 2013, 7, 6498–6506.

    Article  Google Scholar 

  11. Jiang, W. C.; Zhai, S. L.; Qian, Q. H.; Yuan, Y.; Karahan, H. E.; Wei, L.; Goh, K.; Ng, A. K.; Wei, J.; Chen, Y. Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: Realizing a built-to-order concept for micro-supercapacitors. Energy Environ. Sci. 2016, 9, 611–622.

    Article  Google Scholar 

  12. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508–9514.

    Article  Google Scholar 

  13. Jiang, S. L.; Shi, T. L.; Liu, D.; Long, H.; Xi, S.; Wu, F. S.; Li, X. P.; Xia, Q.; Tang, Z. R. Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors. J. Power Sources 2014, 262, 494–500.

    Article  Google Scholar 

  14. Hsia, B.; Kim, M. S.; Vincent, M.; Carraro, C.; Maboudian, R. Photoresist-derived porous carbon for on-chip microsupercapacitors. Carbon 2013, 57, 395–400.

    Article  Google Scholar 

  15. Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.

    Article  Google Scholar 

  16. Shen, C. W.; Wang, X. H.; Li, S. W.; Wang, J. G.; Zhang, W. F.; Kang, F. Y. A high-energy-density micro supercapacitor of asymmetric MnO2-carbon configuration by using micro-fabrication technologies. J. Power Sources 2013, 234, 302–309.

    Article  Google Scholar 

  17. Chen, W.; Beidaghi, M.; Penmatsa, V.; Bechtold, K.; Kumari, L.; Li, W. Z.; Wang, C. L. Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors. IEEE T. Nanotechnol. 2010, 9, 734–740.

    Article  Google Scholar 

  18. Wang, H. J.; Peng, C.; Zheng, J. D.; Peng, F.; Yu, H. Design, synthesis and the electrochemical performance of MnO2/C@CNT as supercapacitor material. Mater. Res. Bull. 2013, 48, 3389–3393.

    Article  Google Scholar 

  19. Kim, S.-K.; Park, H. S. Multiwalled carbon nanotubes coated with a thin carbon layer for use as composite electrodes in supercapacitors. RSC Adv. 2014, 4, 47827–47832.

    Article  Google Scholar 

  20. Liu, Y. Y.; Tang, J.; Chen, X. Q.; Xin, J. H. Decoration of carbon nanotubes with chitosan. Carbon 2005, 43, 3178–3180.

    Article  Google Scholar 

  21. Jiang, S. L.; Shi, T. L.; Zhan, X. B.; Xi, S.; Long, H.; Gong, B.; Li, J. J.; Cheng, S. Y.; Huang, Y. Y.; Tang, Z. R. Scalable fabrication of carbon-based MEMS/NEMS and their applications: A review. J. Micromech. Microeng. 2015, 25, 113001.

    Article  Google Scholar 

  22. Wei, L.; Sevilla, M.; Fuertes, A. B.; Mokaya, R.; Yushin, G. Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv. Funct. Mater. 2012, 22, 827–834.

    Article  Google Scholar 

  23. Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280.

    Article  Google Scholar 

  24. Simon, P.; Gogotsi, Y. Capacitive energy storage in nano-structured carbon-electrolyte systems. Acc. Chem. Res. 2013, 46, 1094–1103.

    Article  Google Scholar 

  25. Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251.

    Article  Google Scholar 

  26. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.

    Article  Google Scholar 

  27. Sivaraman, P.; Bhattacharrya, A. R.; Mishra, S. P.; Thakur, A. P.; Shashidhara, K.; Samui, A. B. Asymmetric supercapacitor containing poly(3-methyl thiophene)-multiwalled carbon nanotubes nanocomposites and activated carbon. Electrochim. Acta 2013, 94, 182–191.

    Article  Google Scholar 

  28. Penmatsa, V.; Kawarada, H.; Wang, C. L. Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis. J. Micromech. Microeng. 2012, 22, 045024.

    Article  Google Scholar 

  29. He, L.; Toda, M.; Kawai, Y.; Miyashita, H.; Omori, M.; Hashida, T.; Berger, R.; Ono, T. Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis. Microsyst. Technol. 2014, 20, 201–208.

    Article  Google Scholar 

  30. He, L.; Toda, M.; Kawai, Y.; Sarbi, M. F.; Omori, M.; Hashida, T.; Ono, T. Fabrication of a Si-PZT hybrid XY-microstage with CNT-carbon hinges. IEEJ Trans. Sens. Micromach. 2012, 132, 425–426.

    Article  Google Scholar 

  31. Zhou, P.; Yang, X.; He, L.; Hao, Z. M.; Luo, W.; Xiong, B.; Xu, X.; Niu, C. J.; Yan, M. Y.; Mai, L. Q. The Young’s modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation. Appl. Phys. Lett. 2015, 106, 111908.

    Article  Google Scholar 

  32. Reserbat-Plantey, A.; Schädler, K. G.; Gaudreau, L.; Navickaite, G.; Güttinger, J.; Chang, D.; Toninelli, C.; Bachtold, A.; Koppens, F. H. L. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nat. Commun. 2016, 7, 10218.

    Article  Google Scholar 

  33. Lau, C.; Cooney, M. J.; Atanassov, P. Conductive macroporous composite chitosan-carbon nanotube scaffolds. Langmuir 2008, 24, 7004–7010.

    Article  Google Scholar 

  34. Yang X. M.; Tu, Y. F.; Li, L.; Shang, S. M.; Tao, X.-M. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 1707–1713.

    Article  Google Scholar 

  35. Lin, J. H.; He, C. Y.; Zhao, Y.; Zhang, S. S. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sensor. Actuat. B 2009, 137, 768–773.

    Article  Google Scholar 

  36. Yamamoto, G.; Suk, J. W.; An, J.; Piner, R. D.; Hashida, T.; Takagi, T.; Ruoff, R. S. The influence of Nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading. Diam. Relat. Mater. 2010, 19, 748–751.

    Article  Google Scholar 

  37. Wang, S.; Hsia, B.; Carraro, C.; Maboudian, R. Highperformance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. J. Mater. Chem. A 2014, 2, 7997–8002.

    Article  Google Scholar 

  38. Huang, P. H.; Heon, M.; Pech, D.; Brunet, M.; Taberna, P.-L.; Gogotsi, Y.; Lofland, S.; Hettinger, J. D.; Simon, P. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 2013, 225, 240–244.

    Article  Google Scholar 

  39. Pech, D.; Brunet, M.; Taberna, P.-L.; Simon, P.; Fabre, N.; Mesnilgrente, F.; Conédéra, V.; Durou, H. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 2010, 195, 1266–1269.

    Article  Google Scholar 

  40. Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 2014, 25, 055401.

    Article  Google Scholar 

  41. Jiang, Y. Q.; Zhou, Q.; Lin, L. Planar MEMS supercapacitor using carbon nanotube forests. In Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 2009, pp 587–590.

    Google Scholar 

  42. Wu, Z.-S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphenebased in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

    Google Scholar 

  43. Yun, J.; Kim, D.; Lee, G.; Ha, J. S. All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon 2014, 79, 156–164.

    Article  Google Scholar 

  44. Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.

    Article  Google Scholar 

  45. Park, B. Y.; Taherabadi, L.; Wang, C. L.; Zoval, J.; Madou, M. J. Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media. J. Electrochem. Soc. 2005, 152, J136–J143.

    Article  Google Scholar 

  46. Cai, Z. Y.; Xu, L.; Yan, M. Y.; Han, C. H.; He, L.; Hercule, K. M.; Niu, C. J.; Yuan, Z. F.; Xu, W. W.; Qu, L. B. et al. Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 2015, 15, 738–744.

    Article  Google Scholar 

  47. An, Z. L.; He, L.; Toda, M.; Yamamoto, G.; Hashida, T.; Ono, T. Microstructuring of carbon nanotubes-nickel nanocomposite. Nanotechnology 2015, 26, 195601.

    Article  Google Scholar 

  48. Xu, G. H.; Zheng, C.; Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Nie, J. Q.; Wang, X. H.; Wei, F. Binder-free activated carbon/ carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 2011, 4, 870–881.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang He or Liqiang Mai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., He, L., Tang, C. et al. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 9, 2510–2519 (2016). https://doi.org/10.1007/s12274-016-1137-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1137-3

Keywords

Navigation