Skip to main content
Log in

Chirality recognition in concerted proton transfer process for prismatic water clusters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Proton transfer and chiral conversion via hydrogen bonds (HBs) are important processes in applications such as chiral recognition, enzymatic catalysis, and drug preparation. Herein, we investigate the chiral conversion and interlayer recognition, via concerted intralayer proton transfer (CIPT) processes, of small prismatic water clusters, in the form of bilayer n−membered water rings (BnWRs, n = 4, 5, 6). Density functional theory (DFT) calculations show that despite the small energy variations between the initial and final states of the clusters of less than 0.3 kcal·mol−1, the vibrational circular dichroism (VCD) spectrum provides clear chiral recognition peaks in the range of 3,000 to 3,500 cm−1. The vibrational modes in this region correspond to stretching of intralayer HBs, which produces strong signals in the infrared (IR) and Raman spectra. The electronic circular dichroism (ECD) spectrum also reveals obvious chiroptical characteristics. The molecular orbitals involved in the interlayer interaction are dominated by O 2p atomic orbitals; the energy of these orbitals increased by up to 0.1 eV as a result of the CIPT processes, indicating corresponding recognition between monolayer water clusters. In addition, isotopic substitution by deuterium in the BnWRs results in characteristic peaks in the VCD spectra that can be used as fingerprints in the identification of the chiral structures. Our findings provide new insights into the mechanism of chiral recognition in small prismatic water clusters at the atomic level as well as incentives for future experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolamic, I.; Varnholt, B.; Bürgi, T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat. Commun. 2015, 6, 7117.

    Article  Google Scholar 

  2. Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. Chem., Int. Ed. 1995, 34, 1143–1170.

    Article  Google Scholar 

  3. Salem, L.; Chapuisat, X.; Segal, G.; Hiberty, P. C.; Minot, C.; Leforestier, C.; Sautet, P. Chirality forces. J. Am. Chem. Soc. 1987, 109, 2887–2894.

    Article  Google Scholar 

  4. Bove, L. E.; Klotz, S.; Paciaroni, A.; Sacchetti, F. Anomalous proton dynamics in ice at low temperatures. Phys. Rev. Lett. 2009, 103, 165901.

    Article  Google Scholar 

  5. Liedl, K. R.; Sekušak, S.; Kroemer, R. T.; Rode, B. M. New insights into the dynamics of concerted proton tunneling in cyclic water and hydrogen fluoride clusters. J. Phys. Chem. A 1997, 101, 4707–4716.

    Article  Google Scholar 

  6. Pugliano, N.; Saykally, R. J. Measurement of quantum tunneling between chiral isomers of the cyclic water trimer. Science 1992, 257, 1937–1940.

    Article  Google Scholar 

  7. Meng, X. Z.; Guo, J.; Peng, J. B.; Chen, J.; Wang, Z. C.; Shi, J. R.; Li, X. Z.; Wang, E. G.; Jiang, Y. Direct visualization of concerted proton tunnelling in a water nanocluster. Nat. Phys. 2015, 11, 235–239.

    Article  Google Scholar 

  8. Drechsel-Grau, C.; Marx, D. Tunnelling in chiral water clusters: Protons in concert. Nat. Phys. 2015, 11, 216–218.

    Article  Google Scholar 

  9. Mohammed, O. F.; Pines, D.; Dreyer, J.; Pines, E.; Nibbering, E. T. J. Sequential proton transfer through water bridges in acid-base reactions. Science 2005, 310, 83–86.

    Article  Google Scholar 

  10. Inaba, S. Theoretical study of water cluster catalyzed decomposition of formic acid. J. Phys. Chem. A 2014, 118, 3026–3038.

    Article  Google Scholar 

  11. Lutz, S.; Tubert-Brohman, I.; Yang, Y. G.; Meuwly, M. Water-assisted proton transfer in ferredoxin I. J. Biol. Chem. 2011, 286, 23679–23687.

    Article  Google Scholar 

  12. Li, L.; Kumar, M.; Zhu, C. Q.; Zhong, J.; Francisco, J. S.; Zeng, X. C. Near-barrierless ammonium bisulfate formation via a loop-structure promoted proton-transfer mechanism on the surface of water. J. Am. Chem. Soc. 2016, 138, 1816–1819.

    Article  Google Scholar 

  13. Tachikawa, H.; Takada, T. Proton transfer rates in ionized water clusters (H2O)n (n = 2–4). RSC Adv. 2015, 5, 6945–6953.

    Article  Google Scholar 

  14. Herr, J. D.; Talbot, J.; Steele, R. P. Structural progression in clusters of ionized water, (H2O)+ n = 1–5. J. Phys. Chem. A 2015, 119, 752–766.

    Article  Google Scholar 

  15. Xantheas, S. S. Ab initio studies of cyclic water clusters (H2O)n, n=1–6. II. Analysis of many-body interactions. J. Chem. Phys. 1994, 100, 7523–7534.

    Article  Google Scholar 

  16. Temelso, B.; Archer, K. A.; Shields, G. C. Benchmark structures and binding energies of small water clusters with anharmonicity corrections. J. Phys. Chem. A 2011, 115, 12034–12046.

    Article  Google Scholar 

  17. Bryantsev, V. S.; Diallo, M. S.; van Duin, A. C. T.; Goddard III, W. A. Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. J. Chem. Theory Comput. 2009, 5, 1016–1026.

    Article  Google Scholar 

  18. Lee, H. M.; Suh, S. B.; Lee, J. Y.; Tarakeshwar, P.; Kim, K. S. Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J. Chem. Phys. 2000, 112, 9759–9772.

    Article  Google Scholar 

  19. Contreras-García, J.; Yang, W. T.; Johnson, E. R. Analysis of hydrogen-bond interaction potentials from the electron density: Integration of noncovalent interaction regions. J. Phys. Chem. A 2011, 115, 12983–12990.

    Article  Google Scholar 

  20. Wang, B.; Xin, M. S.; Dai, X.; Song, R. X.; Meng, Y.; Han, J.; Jiang, W. R.; Wang, Z. G.; Zhang, R.-Q. Electronic delocalization in small water rings. Phys. Chem. Chem. Phys. 2015, 17, 2987–2990.

    Article  Google Scholar 

  21. Guo, J.; Meng, X. Z.; Chen, J.; Peng, J. B.; Sheng, J. M.; Li, X. Z.; Xu, L. M.; Shi, J.-R.; Wang, E. G.; Jiang, Y. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 2014, 13, 184–189.

    Article  Google Scholar 

  22. Shchyrba, A.; Nguyen, M. T.; Wä ckerlin, C.; Martens, S.; Nowakowska, S.; Ivas, T.; Roose, J.; Nijs, T.; Boz, S.; Schär, M. et al. Chirality transfer in 1D self-assemblies: Influence of H-bonding vs metal coordination between dicyano [7] helicene enantiomers. J. Am. Chem. Soc. 2013, 135, 15270–15273.

    Article  Google Scholar 

  23. Crassous, J. Transfer of chirality from ligands to metal centers: Recent examples. Chem. Commum. 2012, 48, 9687–9695.

    Article  Google Scholar 

  24. Kühnle, A.; Linderoth, T. R.; Hammer, B.; Besenbacher, F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature 2002, 415, 891–893.

    Article  Google Scholar 

  25. Merten, C.; Xu, Y. J. Chirality transfer in a methyl lactateammonia complex observed by matrix-isolation vibrational circular dichroism spectroscopy. Angew. Chem. 2013, 125, 2127–2130.

    Article  Google Scholar 

  26. Kurouski, D.; Handen, J. D.; Dukor, R. K.; Nafie, L. A.; Lednev, I. K. Supramolecular chirality in peptide microcrystals. Chem. Commun. 2015, 51, 89–92.

    Article  Google Scholar 

  27. Vázquez-Nakagawa, M.; Rodríguez-Pérez, L.; Herranz, M. A.; Martí n, N. Chirality transfer from graphene quantum dots. Chem. Commun. 2016, 52, 665–668.

    Article  Google Scholar 

  28. Pescitelli, G.; Di Bari, L.; Berova, N. Application of electronic circular dichroism in the study of supramolecular systems. Chem. Soc. Rev. 2014, 43, 5211–5233.

    Article  Google Scholar 

  29. Magyarfalvi, G.; Tarczay, G.; Vass, E. Vibrational circular dichroism. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 403–425.

    Article  Google Scholar 

  30. Losada, M.; Xu, Y. J. Chirality transfer through hydrogenbonding: Experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water. Phys. Chem. Chem. Phys. 2007, 9, 3127–3135.

    Article  Google Scholar 

  31. Sadlej, J.; Dobrowolski, J. C.; Rode, J. E. VCD spectroscopy as a novel probe for chirality transfer in molecular interactions. Chem. Soc. Rev. 2010, 39, 1478–1488.

    Article  Google Scholar 

  32. Xu, R. L.; Liu, J.; Chen, F.; Liu, N. H.; Cai, Y. X.; Liu, X. Q.; Song, X.; Dong, M. D.; Wang, L. Room-temperature tracking of chiral recognition process at the single-molecule level. Nano Res. 2015, 8, 3505–3511.

    Article  Google Scholar 

  33. Fu, Y. Z.; Han, Q.; Chen, Q.; Wang, Y. H.; Zhou, J.; Zhang, Q. A new strategy for chiral recognition of amino acids. Chem. Commun. 2012, 48, 2322–2324.

    Google Scholar 

  34. Fusè, M.; Mazzeo, G.; Longhi, G.; Abbate, S.; Zerla, D.; Rimoldi, I.; Alessandro, C.; Cesarotti, E. VCD spectroscopy as an excellent probe of chiral metal complexes containing a carbon monoxide vibrational chromophore. Chem. Commun. 2015, 51, 9385–9387.

    Article  Google Scholar 

  35. Dahlke, E. E.; Truhlar, D. G. Improved density functionals for water. J. Phys. Chem. B 2005, 109, 15677–15683.

    Article  Google Scholar 

  36. Elgabarty, H.; Khaliullin, R. Z.; Kuhne, T. D. Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments. Nat. Commun. 2015, 6, 8318.

    Article  Google Scholar 

  37. Wang, B.; Wang, L.; Dai, X.; Gao, Y.; Jiang, W. R.; Han, J.; Wang, Z. G.; Zhang, R.-Q. Correlation between electron delocalization and structural planarization in small water rings. Int. J. Quantum Chem. 2015, 115, 817–819.

    Article  Google Scholar 

  38. Drechsel-Grau, C.; Marx, D. Quantum simulation of collective proton tunneling in hexagonal ice crystals. Phys. Rev. Lett. 2014, 112, 148302.

    Article  Google Scholar 

  39. Merte, L. R.; Bechstein, R.; Peng, G. W.; Rieboldt, F.; Farberow, C. A.; Zeuthen, H.; Knudsen, J.; Laegsgaard, E.; Wendt, S.; Mavrikakis, M. et al. Water clustering on nanostructured iron oxide films. Nat. Commun. 2014, 5, 4193.

    Article  Google Scholar 

  40. Falenty, A.; Hansen, T. C.; Kuhs, W. F. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 2014, 516, 231–233.

    Article  Google Scholar 

  41. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  42. Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.

    Article  Google Scholar 

  43. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.

    Article  Google Scholar 

  44. Li, F. Y.; Wang, L.; Zhao, J. J.; Xie, J. R. H.; Riley, K. E.; Chen, Z. F. What is the best density functional to describe water clusters: Evaluation of widely used density functionals with various basis sets for (H2O)n (n = 1–10). Theor. Chem. Acc. 2011, 130, 341–352.

    Article  Google Scholar 

  45. Santra, B.; Michaelides, A.; Fuchs, M.; Tkatchenko, A.; Filippi, C.; Scheffler, M. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions. J. Chem. Phys. 2008, 129, 194111.

    Google Scholar 

  46. Wang, L.; Ceriotti, M.; Markland, T. E. Quantum fluctuations and isotope effects in ab initio descriptions of water. J. Chem. Phys. 2014, 141, 104502.

    Article  Google Scholar 

  47. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206.

    Article  Google Scholar 

  48. Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

    Article  Google Scholar 

  49. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

    Google Scholar 

  50. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

  51. Su, J. T.; Xu, X.; Goddard III, W. A. Accurate energies and structures for large water clusters using the X3LYP hybrid density functional. J. Phys. Chem. A 2004, 108, 10518–10526.

    Article  Google Scholar 

  52. Qian, P.; Song, W.; Lu, L.; Yang, Z. Z. Ab initio investigation of water clusters (H2O)n (n = 2–34). Int. J. Quantum Chem. 2010, 110, 1923–1937.

    Google Scholar 

  53. Miliordos, E.; Xantheas, S. S. An accurate and efficient computational protocol for obtaining the complete basis set limits of the binding energies of water clusters at the MP2 and CCSD(T) levels of theory: Application to (H2O)m, m = 2-6, 8, 11, 16, and 17. J. Chem. Phys. 2015, 142, 234303.

    Article  Google Scholar 

  54. Wang, Y. M.; Babin, V.; Bowman, J. M.; Paesani, F. The water hexamer: Cage, prism, or both. Full dimensional quantum simulations say both. J. Am. Chem. Soc. 2012, 134, 11116–11119.

    Google Scholar 

  55. Saykally, R. J.; Wales, D. J. Pinning down the water hexamer. Science 2012, 336, 814–815.

    Article  Google Scholar 

  56. Buck, U.; Ettischer, I.; Melzer, M.; Buch, V.; Sadlej, J. Structure and spectra of three-dimensional (H2O)n clusters, n = 8, 9, 10. Phys. Rev. Lett. 1998, 80, 2578–2581.

    Article  Google Scholar 

  57. Shields, R. M.; Temelso, B.; Archer, K. A.; Morrell, T. E.; Shields, G. C. Accurate predictions of water cluster formation, (H2O)n=2–10. J. Phys. Chem. A 2010, 114, 11725–11737.

    Article  Google Scholar 

  58. Pérez, C.; Muckle, M. T.; Zaleski, D. P.; Seifert, N. A.; Temelso, B.; Shields, G. C.; Kisiel, Z.; Pate, B. H. Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 2012, 336, 897–901.

    Article  Google Scholar 

  59. Lagutschenkov, A.; Fanourgakis, G. S.; Niedner-Schatteburg, G.; Xantheas, S. S. The spectroscopic signature of the “all-surface” to “internally solvated” structural transition in water clusters in the n = 17–21 size regime. J. Chem. Phys. 2005, 122, 194310.

    Article  Google Scholar 

  60. Welch, W. R. W.; Kubelka, J.; Keiderling, T. A. Infrared, vibrational circular dichroism, and Raman spectral simulations for ß-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory. J. Phys. Chem. B 2013, 117, 10343–10358.

    Article  Google Scholar 

  61. Shao, M.; Keum, J.; Chen, J. H.; He, Y. J.; Chen, W.; Browning, J. F.; Jakowski, J.; Sumpter, B. G.; Ivanov, I. N.; Ma, Y. Z. et al. The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nat. Commun. 2014, 5, 3180.

    Google Scholar 

  62. Sun, C. Q.; Zhang, X.; Zhou, J.; Huang, Y. L.; Zhou, Y. C.; Zheng, W. T. Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 2013, 4, 2565–2570.

    Article  Google Scholar 

  63. Tantirungrotechai, Y.; Phanasant, K.; Roddecha, S.; Surawatanawong, P.; Sutthikhum, V.; Limtrakul, J. Scaling factors for vibrational frequencies and zero-point vibrational energies of some recently developed exchange-correlation functionals. J. Mol. Struc.: THEOCHEM 2006, 760, 189–192.

    Article  Google Scholar 

  64. Merrick, J. P.; Moran, D.; Radom, L. An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 2007, 111, 11683–11700.

    Article  Google Scholar 

  65. Leang, S. S.; Zahariev, F.; Gordon, M. S. Benchmarking the performance of time-dependent density functional methods. J. Chem. Phys. 2012, 136, 104101.

    Article  Google Scholar 

  66. Furukawa, H.; Gá ndara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.

    Article  Google Scholar 

  67. Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612.

    Article  Google Scholar 

  68. Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315.

    Article  Google Scholar 

  69. Song, F. J.; Wang, C.; Falkowski, J. M.; Ma, L. Q.; Lin, W. B. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: Tuning catalytic activity by controlling framework catenation and varying open channel sizes. J. Am. Chem. Soc. 2010, 132, 15390–15398.

    Article  Google Scholar 

  70. Zhang, J.; Yao, Y. G.; Bu, X. H. Comparative study of homochiral and racemic chiral metal-organic frameworks built from camphoric acid. Chem. Mater. 2007, 19, 5083–5089.

    Article  Google Scholar 

  71. Benoit, M.; Marx, D.; Parrinello, M. Tunnelling and zeropoint motion in high-pressure ice. Nature 1998, 392, 258–261.

    Article  Google Scholar 

  72. Guo, J.; Lü, J. T.; Feng, Y. X.; Chen, J.; Peng, J. B.; Lin, Z. R.; Meng, X. Z.; Wang, Z. C.; Li, X. Z.; Wang, E. G. et al. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 2016, 352, 321–325.

    Article  Google Scholar 

  73. Ho, W. Single-molecule chemistry. J. Chem. Phys. 2002, 117, 11033–11061.

    Article  Google Scholar 

  74. Gawronski, H.; Carrasco, J.; Michaelides, A.; Morgenstern, K. Manipulation and control of hydrogen bond dynamics in absorbed ice nanoclusters. Phys. Rev. Lett. 2008, 101, 136102.

    Article  Google Scholar 

  75. Zhang, Q. F.; Wahnström, G.; Björketun, M. E.; Gao, S. W.; Wang, E. G. Path integral treatment of proton transport processes in BaZrO3. Phys. Rev. Lett. 2008, 101, 215902.

    Article  Google Scholar 

  76. Brown-Xu, S. E.; Chisholm, M. H.; Durr, C. B.; Lewis, S. A.; Spilker, T. F.; Young, P. J. Molybdenum–molybdenum quadruple bonds supported by 9,10-anthraquinone carboxylate ligands. Molecular, electronic, ground state and unusual photoexcited state properties. Chem. Sci. 2014, 5, 2657–2666.

    Google Scholar 

  77. Cotton, F. A.; Feng, X. J.; Matusz, M.; Poli, R. Experimental and theoretical studies of the copper(I) and silver(I) dinuclear N,N′-di-p-tolylformamidinato complexes. J. Am. Chem. Soc. 1988, 110, 7077–7083.

    Article  Google Scholar 

  78. Repp, J.; Meyer, G.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005, 94, 026803.

    Article  Google Scholar 

  79. Zhang, J.; Chen, P. C.; Yuan, B. K.; Ji, W.; Cheng, Z. H.; Qiu, X. H. Real-space identification of intermolecular bonding with atomic force microscopy. Science 2013, 342, 611–614.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boon K. Teo or Zhigang Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Jiang, W., Gao, Y. et al. Chirality recognition in concerted proton transfer process for prismatic water clusters. Nano Res. 9, 2782–2795 (2016). https://doi.org/10.1007/s12274-016-1167-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1167-x

Keywords

Navigation