Skip to main content
Log in

Thickness and temperature dependent electrical properties of ZrS2 thin films directly grown on hexagonal boron nitride

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional ZrS2 materials have potential for applications in nanoelectronics because of their theoretically predicted high mobility and sheet current density. Herein, we report the thickness and temperature dependent transport properties of ZrS2 multilayers that were directly deposited on hexagonal boron nitride (h-BN) by chemical vapor deposition. Hysteresis-free gate sweeping, metalinsulator transition, and T γ (γ ~ 0.82–1.26) temperature dependent mobility were observed in the ZrS2 films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  2. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  3. Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

    Article  Google Scholar 

  4. Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS2(1 - x )Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648–2653.

    Article  Google Scholar 

  5. Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

    Article  Google Scholar 

  6. Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 2014, 14, 2019–2025.

    Article  Google Scholar 

  7. Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

    Article  Google Scholar 

  8. Yoon, Y.; Ganapathi, K.; Salahuddin, S. How hood can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768–3773.

    Article  Google Scholar 

  9. Pradhan, N. R.; Rhodes, D.; Feng, S. M.; Xin, Y.; Memaran, S.; Moon, B.-H.; Terrones, H.; Terrones, M.; Balicas, L. Field-effect transistors based on few-layered α-MoTe2. ACS Nano 2014, 8, 5911–5920.

    Article  Google Scholar 

  10. Radisavljevic, B.; Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

    Article  Google Scholar 

  11. Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z.-Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

    Article  Google Scholar 

  12. Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230–5234.

    Article  Google Scholar 

  13. Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174–8181.

    Article  Google Scholar 

  14. Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phononlimited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.

    Article  Google Scholar 

  15. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  Google Scholar 

  16. Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

    Article  Google Scholar 

  17. Huang, Z. S.; Zhang, W. X.; Zhang, W. L.; Li, Y. R. Screening for two dimensional MX2 semiconductors with possible high room temperature mobility. 2015, arXiv:1505.05698. arXiv.org e-Print archive. http://arxiv.org/abs/1505.05698 (accessed Feb 2, 2016).

    Google Scholar 

  18. Zhang, M.; Zhu, Y. M.; Wang, X. S.; Feng, Q. L.; Qiao, S. L.; Wen, W.; Chen, Y. F.; Cui, M. H.; Zhang, J.; Cai, C. Z. et al. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. J. Am. Chem. Soc. 2015, 137, 7051–7054.

    Article  Google Scholar 

  19. Zhang, L. M.; Liu, K. H.; Wong, A. B.; Kim, J.; Hong, X. P.; Liu, C.; Cao, T.; Louie, S. G.; Wang, F.; Yang, P. D. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 2014, 14, 6418–6423.

    Article  Google Scholar 

  20. Chen, L.; Liu, B. L.; Abbas, A. N.; Ma, Y. Q.; Fang, X.; Liu, Y. H.; Zhou, C. W. Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe2 by sulfurassisted chemical vapor deposition. ACS Nano 2014, 8, 11543–11551.

    Article  Google Scholar 

  21. Patel, S. G.; Arora, S. K.; Agarwal, M. K. CVT growth of zirconium sulphoselenide single crystals. Bull. Mater. Sci. 1998, 21, 297–301.

    Article  Google Scholar 

  22. Stacy, A. M.; Hodul, D. T. Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges. J. Phys. Chem. Solids 1985, 46, 405–409.

    Article  Google Scholar 

  23. Roubi, L.; Carlone, C. Resonance Raman spectrum of HfS2 and ZrS2. Phys. Rev. B 1988, 37, 6808.

    Article  Google Scholar 

  24. Cao, Y.; Mishchenko, A.; Yu, G. L.; Khestanova, E.; Rooney, A. P.; Prestat, E.; Kretinin, A. V.; Blake, P.; Shalom, M. B.; Woods, C. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 2015, 15, 4914–4921.

    Article  Google Scholar 

  25. Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene fieldeffect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

    Article  Google Scholar 

  26. Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.

    Article  Google Scholar 

  27. Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641.

    Article  Google Scholar 

  28. Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.

    Article  Google Scholar 

  29. Kalon, G.; Shin, Y. J.; Truong, V. G.; Kalitsov, A.; Yang, H. The role of charge traps in inducing hysteresis: Capacitance–voltage measurements on top gated bilayer graphene. Appl. Phys. Lett. 2011, 99, 083109.

    Article  Google Scholar 

  30. Joshi, P.; Romero, H. E.; Neal, A. T.; Toutam, V. K.; Tadigadapa, S. A. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates. J. Phys.: Condens. Matter 2010, 22, 334214.

    Google Scholar 

  31. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for highquality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  Google Scholar 

  32. Punnoose, A.; Finkel'stein, A. M. Metal-insulator transition in disordered two-dimensional electron systems. Science 2005, 310, 289–291.

    Article  Google Scholar 

  33. Kaasbjerg, K.; Thygesen, K. S.; Jauho, A. P. Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 2013, 87, 235312.

    Article  Google Scholar 

  34. Ma, N.; Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 2014, 4, 011043.

    Google Scholar 

  35. Zeng, L.; Xin, Z.; Chen, S. W.; Du, G.; Kang, J. F.; Liu, X. Y. Remote phonon and impurity screening effect of substrate and gate dielectric on electron dynamics in single layer MoS2. Appl. Phys. Lett. 2013, 103, 113505.

    Article  Google Scholar 

  36. Konar, A.; Fang, T.; Jena, D. Effect of high-gate dielectrics on charge transport in graphene-based field effect transistors. Phys. Rev. B 2010, 82, 115452.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congzhong Cai or Liming Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wang, X., Zhang, M. et al. Thickness and temperature dependent electrical properties of ZrS2 thin films directly grown on hexagonal boron nitride. Nano Res. 9, 2931–2937 (2016). https://doi.org/10.1007/s12274-016-1178-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1178-7

Keywords

Navigation