Skip to main content
Log in

Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The assembly of hybrid nanomaterials has opened up a new direction for the construction of high-performance anodes for lithium-ion batteries (LIBs). In this work, we present a straightforward, eco-friendly, one-step hydrothermal protocol for the synthesis of a new type of Fe2O3-SnO2/graphene hybrid, in which zero-dimensional (0D) SnO2 nanoparticles with an average diameter of 8 nm and one-dimensional (1D) Fe2O3 nanorods with a length of ~150 nm are homogeneously attached onto two-dimensional (2D) reduced graphene oxide nanosheets, generating a unique point-line-plane (0D-1D-2D) architecture. The achieved Fe2O3-SnO2/graphene exhibits a well-defined morphology, a uniform size, and good monodispersity. As anode materials for LIBs, the hybrids exhibit a remarkable reversible capacity of 1,530 mA·g−1 at a current density of 100 mA·g−1 after 200 cycles, as well as a high rate capability of 615 mAh·g−1 at 2,000 mA·g−1. Detailed characterizations reveal that the superior lithium-storage capacity and good cycle stability of the hybrids arise from their peculiar hybrid nanostructure and conductive graphene matrix, as well as the synergistic interaction among the components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  2. Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270, 590–593.

    Article  Google Scholar 

  3. Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

    Article  Google Scholar 

  4. Jeong, J. M.; Choi, B. G.; Lee, S. C.; Lee, K. G.; Chang, S. J.; Han, Y. K.; Lee, Y. B.; Lee, H. U.; Kwon, S.; Lee, G. et al. Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv. Mater. 2013, 25, 6250–6255.

    Article  Google Scholar 

  5. Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M. W.Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–237.

    Google Scholar 

  6. Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W.Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

    Google Scholar 

  7. Xu, X. D.; Cao, R. G.; Jeong, S.; Cho, J. Spindle-like mesoporous a-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12, 4988–4991.

    Article  Google Scholar 

  8. Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; SubbaRao,G. V.; Chowdari, B. V. R. a-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792–2799.

    Google Scholar 

  9. Lin, Y. M.; Abel, P. R.; Heller, A.; Mullins, C. B. a-Fe2O3 nanorods as anode material for lithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2885–2891.

    Google Scholar 

  10. Deng, D.; Lee, J. Y. Hollow core-shell mesospheres of crystalline SiO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem. Mater. 2008, 20, 1841–1846.

    Article  Google Scholar 

  11. Luo, B.; Qiu, T. F.; Hao, L.; Wang, B.; Jin, M. H.; Li, X. L.; Zhi, L.J.Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan. J. Mater. Chem. 2016, 4, 362–367.

    Google Scholar 

  12. Lin, J.; Peng, Z. W.; Xiang, C. S.; Ruan, G. D.; Yan, Z.; Natelson, D.; Tour, J. M. Graphene nanoribbon and nanostructured SiO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001–6006.

    Article  Google Scholar 

  13. Hertzberg, B.; Alexeev, A.; Yushin, G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 2010, 132, 8548–8549.

    Article  Google Scholar 

  14. Xia, G. F.; Li, N.; Li, D. Y.; Liu, R. Q.; Wang, C.; Li, Q.; Lü, X. J.; Spendelow, J.S.; Zhang, J. L.; Wu, G. Graphene/Fe2O3/SiO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 8607–8614.

    Article  Google Scholar 

  15. Yuan, Y.; Du, F. H.; Shen, X. P.; Ji, Z. Y.; Zhou, H.; Zhu, G. X. Porous SiO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries. Dalton Trans. 2014, 43, 17544–17550.

    Article  Google Scholar 

  16. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  17. Luo, B.; Zhi, L. J. Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 2015, 8, 456–477.

    Article  Google Scholar 

  18. Wang, D. H.; Choi, D.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G. et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.

    Article  Google Scholar 

  19. Zhang, H. J.; Tao, H. H.; Jiang, Y.; Jiao, Z.; Wu, M. H.; Zhao, B. Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J. Power Sources 2010, 195, 2950–2955.

    Article  Google Scholar 

  20. Luo, B.; Fang, Y.; Wang, B.; Zhou, J. S.; Song, H. H.; Zhi, L. J. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 2012, 5, 5226–5230.

    Article  Google Scholar 

  21. Tang, J. J.; Yang, J.; Zhou, L. M.; Xie, J.; Chen, G. H.; Zhou, X. Y. Layer-by-layer self-assembly of a sandwich-like graphene wrapped SnOx@graphene composite as an anode material for lithium ion batteries. J. Mater. Chem. A 2014, 2, 6292–6295.

    Article  Google Scholar 

  22. Liu, S. K.; Chen, Z. X.; Xie, K.; Li, Y. J.; Xu J.; Zheng, C. M. A facile one-step hydrothermal synthesis of a-Fe2O3 nanoplates imbedded in graphene networks with high-rate lithium storage and long cycle life. J. Mater. Chem. A 2014, 2, 13942–13948.

    Article  Google Scholar 

  23. Liu, S.; Wang, R. H.; Liu, M. M.; Lou, J. Q.; Jin, X. H.; Sun, J.; Gao, L. Fe2O3@SiO2 nanoparticle decorated graphene flexible films as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 4598–4604.

    Article  Google Scholar 

  24. Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q.Flexible graphene films via the filtration ofwater-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

    Google Scholar 

  25. Gao, R. M.; Zhang, H. J.; Yuan, S.; Shi, L. Y.; Wu, M. H.; Jiao, Z. Controllable synthesis of rod-like SiO2 nanoparticles with tunable length anchored onto graphene nanosheets for improved lithium storage capability. RSC Adv. 2016, 6, 4116–4127.

    Article  Google Scholar 

  26. Zhou, Q.; Zhao, Z. B.; Wang, Z. Y.; Dong, Y. F.; Wang, X. Z.; Gogotsi, Y.; Qiu, J. S. Lowtemperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage. Nanoscale 2014, 6, 2286–2291.

    Article  Google Scholar 

  27. Wu, X. L.; Guo, Y. G.; Wan, L. J.; Hu, C. W. a-Fe2O3 nanostructures: Inorganic salt-controlled synthesis and their electrochemicalperformance toward lithium storage. J. Phys. Chem. C 2008, 112, 16824–16829.

    Article  Google Scholar 

  28. Chen, M. X.; Zhang, C. C.; Li, X. C.; Zhang, L.; Ma, Y. L.; Zhang, L.; Xu, X. Y.; Xia, F. L.; Wang, W.; Gao, J. P. A one-step method for reduction and self-assembling of graphene oxide into reduced graphene oxide aerogels. J. Mater. Chem. A 2013, 1, 2869–2877.

    Article  Google Scholar 

  29. Gu, Y.; Xu, Y.; Wang, Y. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage. ACS Appl. Mater. Interfaces 2013, 5, 801–806.

    Article  Google Scholar 

  30. Zhao, B.; Jiang, Y.; Zhang, H. J.; Tao, H. H.; Zhong, M. Y.; Jiao, Z. Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J. Power Sources 2009, 189, 462–466.

    Article  Google Scholar 

  31. Xu, H. P.; Yuan, S.; Wang, Z. Y.; Zhao, Y.; Fang, J.H.; Shi, L. Y. Graphene anchored with ZrO2 nanoparticles as anodes of lithium ion batteries with enhanced electrochemical performance. RSC Adv. 2014, 4, 8472–8480.

    Article  Google Scholar 

  32. Morgan, W. E.; van Wazer, J. R. Binding energy shifts in the X-ray photoelectron spectra of a series of related group IVa compounds. J. Phys. Chem. 1973, 77, 964–969.

    Article  Google Scholar 

  33. Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 2008, 18, 3941–3946.

    Article  Google Scholar 

  34. Zhou, L.; Wu, H. B.; Zhu, T.; Lou, X. W. Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. J. Mater. Chem. 2012, 22, 827–829.

    Article  Google Scholar 

  35. Zou, Y. Q.; Kan, J.; Wang, Y. Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage. J. Phys. Chem. C 2011, 115, 20747–20753.

    Article  Google Scholar 

  36. Bai, S.; Chen, S. Q.; Shen, X. P.; Zhu, G. X.; Wang, G. X. Nanocomposites of hematite (a-Fe2O3) nanospindles with crumpled reduced graphene oxide nanosheets as highperformance anode material for lithium-ion batteries. RSC Adv. 2012, 2, 10977–10984.

    Article  Google Scholar 

  37. Li, X. Y.; Ma, Y. Y.; Qin, L.; Zhang, Z. Y.; Zhang, Z.; Zheng, Y. Z.; Qu, Y. Q. A bottom-up synthesis of a-Fe2O3 nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. J. Mater. Chem. A 2015, 3, 2158–2165.

    Article  Google Scholar 

  38. Zhang, Y. J.; Jiang, L.; Wang, C. R. Facile synthesis of SiO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries. Phys. Chem. Chem. Phys. 2015, 17, 20061–20065.

    Article  Google Scholar 

  39. Cai, D. P.; Yang, T.; Wang, D. D.; Duan, X. C.; Liu, B.; Wang, L. L.; Liu, Y.; Li, Q. H.; Wang, T. H. Tin dioxide dodecahedral nanocrystals anchored on graphene sheets with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta 2015, 159, 46–51.

    Article  Google Scholar 

  40. Lu, X. X.; Yang, F.; Geng, X.; Xiao, P. Enhanced cyclability of amorphous carbon-coated SiO2-graphene composite as anode for Li-ion batteries. Electrochim. Acta 2014, 147, 596–602.

    Article  Google Scholar 

  41. Xin, F. X.; Tian, H. J.; Wang, X. L.; Xu, W.; Zheng, W. G.; Han, W. Q. Enhanced electrochemical performance of Fe0.74Sn5@reduced graphene oxide nanocomposite anodes for both Li-ion and Na-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 7912–7919.

    Article  Google Scholar 

  42. Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.

    Article  Google Scholar 

  43. Ding, S. J.; Luan, D. Y.; Boey, F. Y. C.; Chen, J. S.; Lou, X. W. SiO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem. Commun. 2011, 47, 7155–7157.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the financial support from the National Natural Science Foundation of China (Nos. 11275121, 21471096, and 21371116), and Program for Innovative Research Team in University (No. IRT13078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianzhou Wang or Haijiao Zhang.

Electronic supplementary material

12274_2016_1271_MOESM1_ESM.pdf

Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Jiao, Z., Wu, M. et al. Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability. Nano Res. 10, 121–133 (2017). https://doi.org/10.1007/s12274-016-1271-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1271-y

Keywords

Navigation