Skip to main content
Log in

Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rapid development of information technology has led to an urgent need for devices with fast information storage and processing, a high density, and low energy consumption. Memristors are considered to be next-generation memory devices with all of the aforementioned advantages. Recently, organometallic halide perovskites were reported to be promising active materials for memristors, although they have poor stability and mediocre performance. Herein, we report for the first time the fabrication of stable and high-performance memristors based on inorganic halide perovskite (CsPbBr3, CPB). The devices have electric field-induced bipolar resistive switching (ReS) and memory behaviors with a large on/off ratio (>105), low working voltage (<1 V) and energy consumption, long data retention (>104 s), and high environmental stability, which are achieved via ZnO capping within the devices. Such a design can be adapted to various devices. Additionally, the heterojunction between the CPB and ZnO endows the devices with a light-induced ReS effect of more than 103 with a rapid response speed (<1 ms), which enables us to tune the resistance state by changing the light and electric field simultaneously. Such multifunctional devices achieved by the combination of information storage and processing abilities have potential applications for future computing that transcends traditional architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Neumann, J. First draft of a report on the EDVAC. In The Origins of Digital Computers: Selected Papers; Randell, B., Ed.; Springer: Berlin Heidelberg, 1982; pp 383–392.

    Chapter  Google Scholar 

  2. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36.

    Article  Google Scholar 

  3. Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R 2014, 83, 1–59.

    Article  Google Scholar 

  4. Xia, Q. F.; Robinett, W.; Cumbie, M. W.; Banerjee, N.; Cardinali, T. J.; Yang, J. J.; Wu, W.; Li, X. M.; Tong, W. M.; Strukov, D. B. et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 2009, 9, 3640–3645.

    Article  Google Scholar 

  5. Song, S. J.; Seok, J. Y.; Yoon, J. H.; Kim, K. M.; Kim, G. H.; Lee, M. H.; Hwang, C. S. Real-time identification of the evolution of conducting nano-filaments in TiO2 thin film ReRAM. Sci. Rep. 2013, 3, 3443.

    Article  Google Scholar 

  6. Chen, C.; Song, C.; Yang, J.; Zeng, F.; Pan, F. Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure. Appl. Phys. Lett. 2012, 100, 253509.

    Article  Google Scholar 

  7. Chen, G.; Song, C.; Chen, C.; Gao, S.; Zeng, F.; Pan, F. Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv. Mater. 2012, 24, 3515–3520.

    Article  Google Scholar 

  8. Jang, J.; Pan, F.; Braam, K.; Subramanian, V. Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications. Adv. Mater. 2012, 24, 3573–3576.

    Article  Google Scholar 

  9. Carchano, H.; Lacoste, R.; Segui, Y. Bistable electrical switching in polymer thin films. Appl. Phys. Lett. 1971, 19, 414–415.

    Article  Google Scholar 

  10. Pender, L. F.; Fleming, R. J. Memory switching in glow discharge polymerized thin films. J. Appl. Phys. 1975, 46, 3426–3431.

    Article  Google Scholar 

  11. Kaji, H.; Kondo, H.; Fujii, T.; Arita, M.; Takahashi, Y. Effect of electrode and interface oxide on the property of ReRAM composed of Pr0.7Ca0.3MnO3. IOP Conf. Ser.: Mater. Sci. Eng. 2010, 8, 012032.

    Article  Google Scholar 

  12. Wang, L.; Jin, K.-J.; Ge, C.; Wang, C.; Guo, H.-Z.; Lu, H.-B.; Yang, G.-Z. Electro-photo double modulation on the resistive switching behavior and switchable photoelectric effect in BiFeO3 films. Appl. Phys. Lett. 2013, 102, 252907.

    Article  Google Scholar 

  13. Jia, C. H.; Sun, X. W.; Li, G. Q.; Chen, Y. H.; Zhang, W. F. Origin of attendant phenomena of bipolar resistive switching and negative differential resistance in SrTiO3:Nb/ZnO heterojunctions. Appl. Phys. Lett. 2014, 104, 043501.

    Article  Google Scholar 

  14. Sekhar, K. C.; Silva, J. P. B.; Kamakshi, K.; Pereira, M.; Gomes, M. J. M. Semiconductor layer thickness impact on optical and resistive switching behavior of pulsed laser deposited BaTiO3/ZnO heterostructures. Appl. Phys. Lett. 2013, 102, 212903.

    Article  Google Scholar 

  15. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

    Article  Google Scholar 

  16. Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373–7380.

    Article  Google Scholar 

  17. Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

    Article  Google Scholar 

  18. Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

    Article  Google Scholar 

  19. Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2015, 2, 1500194.

    Article  Google Scholar 

  20. Gu, C. W.; Lee, J.-S. Flexible hybrid organic–inorganic perovskite memory. ACS Nano 2016, 10, 5413–5418.

    Article  Google Scholar 

  21. Lin, C. C.; Tu, B. C.; Lin, C. H.; Lin, C. H.; Tseng, T. Y. Resistive switching mechanisms of V-doped SrZrO3 memory films. IEEE Elec. Dev. Lett. 2006, 27, 725–727.

    Article  Google Scholar 

  22. Yan, K.; Peng, M.; Yu, X.; Cai, X.; Chen, S.; Hu, H. W.; Chen, B. X.; Gao, X.; Dong, B.; Zou, D. C. High-performance perovskite memristor based on methyl ammonium lead halides. J. Mater. Chem. C 2016, 4, 1375–1381.

    Article  Google Scholar 

  23. Wang, Y.; Li, X. M.; Zhao, X.; Xiao, L.; Zeng, H. B; Sun, H. D. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 2016, 16, 448–453.

    Article  Google Scholar 

  24. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    Article  Google Scholar 

  25. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

    Article  Google Scholar 

  26. Lee, K.-T.; Guo, L. J.; Park, H. J. Neutral- and multi-colored semitransparent perovskite solar cells. Molecules 2016, 21, 475.

    Article  Google Scholar 

  27. Li, X. M.; Yu, D. J.; Cao, F.; Gu, Y.; Wei, Y.; Wu, Y.; Song, J. Z.; Zeng, H. B. Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv. Funct. Mater. 2016, 26, 5903–5912.

    Article  Google Scholar 

  28. Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y.-B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147.

    Article  Google Scholar 

  29. Kato, Y. C.; Ono, L. K.; Lee, M. V.; Wang, S. H.; Raga, S. R.; Qi, Y. B. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2015, 2, 1500195.

    Article  Google Scholar 

  30. Huang, Y.; Shen, Z. H.; Wu, Y.; Wang, X. Q.; Zhang, S. F.; Shi, X. Q.; Zeng, H. B. Amorphous ZnO based resistive random access memory. RSC Adv. 2016, 6, 17867–17872.

    Article  Google Scholar 

  31. Fan, Y. S.; Liu, P. T. Characteristic evolution from rectifier Schottky diode to resistive-switching memory with Al-doped zinc tin oxide film. IEEE Trans. Elec. Dev. 2014, 61, 1071–1076.

    Article  Google Scholar 

  32. Yoo, E. J.; Lyu, M. Q.; Yun, J.-H.; Kang, C. J.; Choi, Y. J.; Wang, L. Z. Resistive switching behavior in organic–inorganic hybrid CH3NH3PbI3-XClX perovskite for resistive random access memory devices. Adv. Mater. 2015, 27, 6170–6175.

    Article  Google Scholar 

  33. Lin, G. M.; Lin, Y. W.; Cui, R. L.; Huang, H.; Guo, X. H.; Li, C.; Dong, J. Q.; Guo, X. F.; Sun, B. Q. An organicinorganic hybrid perovskite logic gate for better computing. J. Mater. Chem. C 2015, 3, 10793–10798.

    Article  Google Scholar 

  34. Choi, J.; Park, S.; Lee, J.; Hong, K.; Kim, D.-H.; Moon, C. W.; Park, G. D.; Suh, J.; Hwang, J.; Kim, S. Y. et al. Organolead halide perovskites for low operating voltage multilevel resistive switching. Adv. Mater. 2016, 28, 6562–6567.

    Article  Google Scholar 

  35. Kim, I.; Siddik, M.; Shin, J.; Biju, K. P.; Jung, S.; Hwang, H. Low temperature solution-processed graphene oxide/Pr0.7Ca0.3MnO3 based resistive-memory device. Appl. Phys. Lett. 2011, 99, 042101.

    Article  Google Scholar 

  36. Kim, C. H.; Ahn, Y.; Son, J. Y. SrTiO3-based resistive switching memory device with graphene nanoribbon electrodes. J. Am. Ceram. Soc. 2016, 99, 9–11.

    Article  Google Scholar 

  37. Yoo, E.; Lyu, M. Q.; Yun, J.-H.; Kang, C. J.; Choi, Y.; Wang, L. Z. Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3–xClx/FTO structure. J. Mater. Chem. C 2016, 4, 7824–7830.

    Article  Google Scholar 

  38. Szmytkowski, J. The influence of the thickness, recombination and space charge on the loss of photocurrent in organic semiconductors: An analytical model. J. Phys. D: Appl. Phys. 2007, 40, 3352.

    Article  Google Scholar 

  39. Xiao, Z. G.; Yuan, Y. B.; Shao, Y. C.; Wang, Q.; Dong, Q. F.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. S. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 2015, 14, 193–198.

    Article  Google Scholar 

  40. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

    Article  Google Scholar 

  41. Lin, C.-Y.; Wang, S.-Y.; Lee, D.-Y.; Tseng, T.-Y. Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films. J. Electrochem. Soc. 2008, 155, H615–H619.

    Article  Google Scholar 

  42. Qian, L.; Zheng, Y.; Xue, J. E.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solutionprocessed multilayer structures. Nat. Photonics 2011, 5, 543–548.

    Article  Google Scholar 

  43. Liu, Q.; Guan, W. H.; Long, S. B.; Jia, R.; Liu, M.; Chen, J. N. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl. Phys. Lett. 2008, 92, 012117.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Basic Research Program of China (No. 2014CB931702), National Natural Science Foundation of China (Nos. 51572128 and 5151101197), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Li or Haibo Zeng.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wei, Y., Huang, Y. et al. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 10, 1584–1594 (2017). https://doi.org/10.1007/s12274-016-1288-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1288-2

Keywords

Navigation