Skip to main content
Log in

YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In spintronics, it is highly desirable to find new materials that can simultaneously possess complete spin-polarization, high-speed conduction electrons, large Curie temperature, and robust ferromagnetic ground states. Using first-principles calculations, we demonstrate that the stable YN2 monolayer with octahedral coordination is a novel p-state Dirac half metal (DHM), which not only has a fully spin-polarized Dirac state, but also the highest Fermi velocity (3.74 × 105 m/s) of the DHMs reported to date. In addition, its half-metallic gap of 1.53 eV is large enough to prevent the spin-flip transition. Because of the strong nonlocal p orbitals of N atoms (N-p) direct exchange interaction, the Curie temperature reaches over 332 K. Moreover, its ferromagnetic ground state can be well preserved under carrier doping or external strain. Therefore, the YN2 monolayer is a promising DHM for high-speed spintronic devices and would lead to new opportunities in designing other p-state DHMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; Von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

    Article  Google Scholar 

  2. Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

    Article  Google Scholar 

  3. Awschalom, D. D.; Flatte, M. E. Challenges for semiconductor spintronics. Nat. Phys. 2007, 3, 153–159.

    Article  Google Scholar 

  4. Li, X. X.; Yang, J. L. First-principles design of spintronics materials. Natl. Sci. Rev. 2016, 3, 365–381.

    Article  Google Scholar 

  5. Felser, C.; Fecher, G. H.; Balke, B. Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem., Int. Ed. 2007, 46, 668–699.

    Article  Google Scholar 

  6. Wang, X. L. Proposal for a new class of materials: Spin gapless semiconductors. Phys. Rev. Lett. 2008, 100, 156404.

    Article  Google Scholar 

  7. Ishizuka, H.; Motome, Y. Dirac half-metal in a triangular ferrimagnet. Phys. Rev. Lett. 2012, 109, 237207.

    Article  Google Scholar 

  8. Li, Y. C.; West, D.; Huang, H. Q.; Li, J.; Zhang, S. B.; Duan, W. H. Theory of the Dirac half metal and quantum anomalous hall effect in Mn-intercalated epitaxial graphene. Phys. Rev. B 2015, 92, 201403(R).

    Article  Google Scholar 

  9. Cai, T. Y.; Li, X.; Wang, F.; Ju, S.; Feng, J.; Gong, C. D. Single-spin Dirac fermion and chern insulator based on simple oxides. Nano Lett. 2015, 15, 6434–6439.

    Article  Google Scholar 

  10. Wei, L.; Zhang, X. M.; Zhao, M. W. Spin-polarized Dirac cones and topological nontriviality in a metal-organic framework Ni2C24S6H12. Phys. Chem. Chem. Phys. 2016, 18, 8059–8064.

    Article  Google Scholar 

  11. He, J. J.; Ma, S. Y.; Lyu, P.; Nachtigall, P. Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. J. Mater. Chem. C 2016, 4, 2518–2526.

    Article  Google Scholar 

  12. Zhang, X. M.; Wang, A. Z.; Zhao, M. W. Spin-gapless semiconducting graphitic carbon nitrides: A theoretical design from first principles. Carbon 2015, 84, 1–8.

    Article  Google Scholar 

  13. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  14. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  15. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

    Article  Google Scholar 

  16. Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151.

    Article  Google Scholar 

  17. Zhang, L. Z.; Wang, Z. F.; Du, S. X.; Gao, H. J.; Liu, F. Prediction of a Dirac state in monolayer TiB2. Phys. Rev. B 2014, 90, 161402(R).

    Article  Google Scholar 

  18. Zhang, S. L.; Hu, Y. H.; Hu, Z. Y.; Cai, B.; Zeng, H. B. Hydrogenated arsenenes as planar magnet and Dirac material. Appl. Phys. Lett. 2015, 107, 022102.

    Article  Google Scholar 

  19. Wang, S. M.; Ge, H.; Sun, S. L.; Zhang, J. Z.; Liu, F. M.; Wen, X. D.; Yu, X. H.; Wang, L. P.; Zhang, Y.; Xu, H. W. et al. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J. Am. Chem. Soc. 2015, 137, 4815–4822.

    Article  Google Scholar 

  20. Wu, F.; Huang, C. X.; Wu, H. P.; Lee, C.; Deng, K. M.; Kan, E. J.; Jena, P. Atomically thin transition-metal dinitrides: High-temperature ferromagnetism and half-metallicity. Nano Lett. 2015, 15, 8277–8281.

    Article  Google Scholar 

  21. Wang, Y.; Wang, S.-S.; Lu, Y. H.; Jiang, J. Z.; Yang, S. A. Strain-induced isostructural and magnetic phase transitions in monolayer MoN2. Nano Lett. 2016, 16, 4576–4582.

    Article  Google Scholar 

  22. Wu, H. P.; Qian, Y.; Lu, R. F.; Tan, W. S. A Theoretical study on the electronic property of a new two-dimensional material molybdenum dinitride. Phys. Lett. A 2016, 380, 768–772.

    Article  Google Scholar 

  23. Wang, Y. L.; Ding, Y. The hydrogen-induced structural stability and promising electronic properties of molybdenum and tungsten dinitride nanosheets: A first-principles study. J. Mater. Chem. C 2016, 4, 7485–7493.

    Article  Google Scholar 

  24. Zhang, C. Z.; Sun, Q. A Honeycomb BeN2 sheet with a desirable direct band gap and high carrier mobility. J. Phys. Chem. Lett. 2016, 7, 2664–2670.

    Article  Google Scholar 

  25. Zhang, S. H.; Zhou, J.; Wang, Q.; Jena, P. Beyond graphitic carbon nitride: Nitrogen-rich penta-CN2 sheet. J. Phys. Chem. C 2016, 120, 3993–3998.

    Article  Google Scholar 

  26. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  28. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  29. Ataca, C.; Şahin, H.; Ciraci, S. Stable, Single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomblike structure. J. Phys. Chem. C 2012, 116, 8983–8999.

    Article  Google Scholar 

  30. Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Clarendon Press: Oxford, 1954.

    Google Scholar 

  31. Du, G. D.; Guo, Z. P.; Wang, S. Q.; Zeng, R.; Chen, Z. X.; Liu, H. K. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 2010, 46, 1106–1108.

    Article  Google Scholar 

  32. Crowhurst, J. C.; Goncharov, A. F.; Sadigh, B.; Evans, C. L.; Morrall, P. G.; Ferreira, J. L.; Nelson, A. J. Synthesis and characterization of the nitrides of platinum and iridium. Science 2006, 311, 1275–1278.

    Article  Google Scholar 

  33. Young, A. F.; Sanloup, C.; Gregoryanz, E.; Scandolo, S.; Hemley, R. J.; Mao, H.-K. Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 2006, 96, 155501.

    Article  Google Scholar 

  34. Kawamura, F.; Yusa, H.; Taniguchi, T. Synthesis of rhenium nitride crystals with MoS2 structure. Appl. Phys. Lett. 2012, 100, 251910.

    Article  Google Scholar 

  35. Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 2004, 69, 155406.

    Article  Google Scholar 

  36. Björkman, T.; Gulans, A.; Krasheninnikov, A. V.; Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 2012, 108, 235502.

    Article  Google Scholar 

  37. Zhao, S. T.; Li, Z. Y.; Yang, J. L. Obtaining two-dimensional electron gas in free space without resorting to electron doping: An electride based design. J. Am. Chem. Soc. 2014, 136, 13313–13318.

    Article  Google Scholar 

  38. Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for graphene: Graphynes with direction-dependent Dirac cones. Phys. Rev. Lett. 2012, 108, 086804.

    Article  Google Scholar 

  39. Li, Y. C.; Chen, P. C.; Zhou, G.; Li, J.; Wu, J.; Gu, B. L.; Zhang, S. B.; Duan, W. H. Dirac fermions in strongly bound graphene systems. Phys. Rev. Lett. 2012, 109, 206802.

    Article  Google Scholar 

  40. Hasegawa, Y.; Konno, R.; Nakano, H.; Kohmoto, M. Zero modes of tight-binding electrons on the honeycomb lattice. Phys. Rev. B 2006, 74, 033413.

    Article  Google Scholar 

  41. Wang, Y. L.; Ding, Y. Strain-induced self-doping in silicene and germanene from first-principles. Solid State Comm. 2013, 155, 6–11.

    Article  Google Scholar 

  42. Zhou, J.; Sun, Q. Magnetism of phthalocyanine-based organometallic single porous sheet. J. Am. Chem. Soc. 2011, 133, 15113–15119.

    Article  Google Scholar 

  43. Li, X. X.; Wu, X. J.; Yang, J. L. Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping. J. Am. Chem. Soc. 2014, 136, 11065–11069.

    Article  Google Scholar 

  44. Zhao, M. W.; Wang, A. Z.; Zhang, X. M. Half-metallicity of a Kagome spin lattice: The case of a manganese bisdithiolene monolayer. Nanoscale 2013, 5, 10404–10408.

    Article  Google Scholar 

  45. Kan, M.; Zhou, J.; Sun, Q.; Kawazoe, Y.; Jena, P. The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett. 2013, 4, 3382–3386.

    Article  Google Scholar 

  46. Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Holt Rinehart/Winston: New York, 1976.

    Google Scholar 

  47. Liu, J. Y.; Sun, Q. Enhanced ferromagnetism in a Mn3C12N12H12 sheet. ChemPhysChem 2015, 16, 614–620.

    Article  Google Scholar 

  48. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Article  Google Scholar 

  49. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

Download references

Acknowledgements

This work is currently supported by the National Natural Science Foundation of China (Nos. 11547260, 11134005, 11574040, and 11604165), the Scientific Research Project of Universities in the Inner Mongolia Autonomous Region (No. NJZY006), Natural Science Foundation of Inner Mongolia (No. 2016BS0104) and the 2014 Startup Project for the Introducing Doctor of Inner Mongolia University (No. 21200-5145135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, J. & Zhao, J. YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics. Nano Res. 10, 1972–1979 (2017). https://doi.org/10.1007/s12274-016-1384-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1384-3

Keywords

Navigation