Skip to main content
Log in

Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, we demonstrated the successful construction of metal-free zerodimensional/ two-dimensional carbon nanodot (CND)-hybridized protonated g-C3N4 (pCN) (CND/pCN) heterojunction photocatalysts by means of electrostatic attraction. We experimentally found that CNDs with an average diameter of 4.4 nm were uniformly distributed on the surface of pCN using electron microscopy analysis. The CND/pCN-3 sample with a CND content of 3 wt.% showed the highest catalytic activity in the CO2 photoreduction process under visible and simulated solar light. This process results in the evolution of CH4 and CO. The total amounts of CH4 and CO generated by the CND/pCN-3 photocatalyst after 10 h of visible-light activity were found to be 29.23 and 58.82 μmol·g −1catalyst , respectively. These values were 3.6 and 2.28 times higher, respectively, than the amounts generated when using pCN alone. The corresponding apparent quantum efficiency (AQE) was calculated to be 0.076%. Furthermore, the CND/pCN-3 sample demonstrated high stability and durability after four consecutive photoreaction cycles, with no significant decrease in the catalytic activity. The significant improvement in the photoactivity using CND/pCN-3 was attributed to the synergistic interaction between pCN and CNDs. This synergy allows the effective migration of photoexcited electrons from pCN to CNDs via well-contacted heterojunction interfaces, which retards the charge recombination. This was confirmed by photoelectrochemical measurements, and steady-state and time-resolved photoluminescence analyses. The first-principles density functional theory (DFT) calculations were consistent with our experimental results, and showed that the work function of CNDs (5.56 eV) was larger than that of pCN (4.66 eV). This suggests that the efficient shuttling of electrons from the conduction band of pCN to CNDs hampers the recombination of electron–hole pairs. This significantly increased the probability of free charge carriers reducing CO2 to CH4 and CO. Overall, this study underlines the importance of understanding the charge carrier dynamics of the CND/pCN hybrid nanocomposites, in order to enhance solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forkel, M.; Carvalhais, N.; Rödenbeck, C.; Keeling, R.; Heimann, M.; Thonicke, K.; Zaehle, S.; Reichstein, M. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 2016, 351, 696–699.

    Article  Google Scholar 

  2. Seneviratne, S. I.; Donat, M. G.; Pitman, A. J.; Knutti, R.; Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 2016, 529, 477–483.

    Article  Google Scholar 

  3. Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 2009, 9, 731–737.

    Article  Google Scholar 

  4. Trend watch. Nature 2016, 531, 281.

  5. Wang, W.-H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973.

    Article  Google Scholar 

  6. White, J. L.; Baruch, M. F.; Pander, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

    Article  Google Scholar 

  7. Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

    Article  Google Scholar 

  8. Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 2014, 7, 1528–1547.

    Article  Google Scholar 

  9. Chang, X. X.; Wang, T.; Zhang, P.; Wei, Y. J.; Zhao, J. B.; Gong, J. L. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew. Chem., Int. Ed. 2016, 55, 8840–8845.

    Article  Google Scholar 

  10. Yang, M.-Q.; Zhang, N.; Pagliaro, M.; Xu, Y.-J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 2014, 43, 8240–8254.

    Google Scholar 

  11. Yang, M.-Q.; Xu, Y.-J. Photocatalytic conversion of CO2 over graphene-based composites: Current status and future perspective. Nanoscale Horiz. 2016, 1, 185–200.

    Article  Google Scholar 

  12. Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Facet-dependent photocatalytic properties of TiO2- based composites for energy conversion and environmental remediation. ChemSusChem 2014, 7, 690–719.

    Article  Google Scholar 

  13. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  Google Scholar 

  14. Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

    Article  Google Scholar 

  15. Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A.-R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J.-P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956–1968.

    Article  Google Scholar 

  16. Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Goh, B. T.; Mohamed, A. R. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B 2015, 179, 160–170.

    Article  Google Scholar 

  17. Kong, X. Y.; Lee, W. P. C.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. R. Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels. ChemCatChem 2016, 8, 3074–3081.

    Article  Google Scholar 

  18. Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757–770.

    Article  Google Scholar 

  19. Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478–3493.

    Article  Google Scholar 

  20. Iwase, A.; Yoshino, S.; Takayama, T.; Ng, Y. H.; Amal, R.; Kudo, A. Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator. J. Am. Chem. Soc. 2016, 138, 10260–10264.

    Article  Google Scholar 

  21. Gao, C.; Meng, Q. Q.; Zhao, K.; Yin, H. J.; Wang, D. W.; Guo, J.; Zhao, S. L.; Chang, L.; He, M.; Li, Q. X. et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv. Mater. 2016, 28, 6485–6490.

    Article  Google Scholar 

  22. Ong, W.-J.; Gui, M. M.; Chai, S.-P.; Mohamed, A. R. Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Adv. 2013, 3, 4505–4509.

    Article  Google Scholar 

  23. Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.

    Article  Google Scholar 

  24. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

    Article  Google Scholar 

  25. Pan, Y.-X.; Sun, Z.-Q.; Cong, H.-P.; Men, Y.-L.; Xin, S.; Song, J.; Yu, S.-H. Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 2016, 9, 1689–1700.

    Article  Google Scholar 

  26. Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. R. Photocatalytic reduction of CO2 with H2O over graphene oxidesupported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: Process and kinetic studies. Chem. Eng. J. 2017, 308, 248–255.

    Article  Google Scholar 

  27. Zhang, N.; Yang, M.-Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y.-J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 2015, 115, 10307–10377.

    Article  Google Scholar 

  28. Hou, J. G.; Cao, S. Y.; Wu, Y. Z.; Liang, F.; Ye, L.; Lin, Z. S.; Sun, L. C. Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy 2016, 30, 59–68.

    Article  Google Scholar 

  29. Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.

    Article  Google Scholar 

  30. Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.

    Article  Google Scholar 

  31. Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterization. Nanoscale 2014, 6, 1946–2008.

    Article  Google Scholar 

  32. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  Google Scholar 

  33. Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 2009, 131, 1680–1681.

    Article  Google Scholar 

  34. Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108.

    Article  Google Scholar 

  35. Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    Google Scholar 

  36. Pan, Z. M.; Zheng, Y.; Guo, F. S.; Niu, P. P.; Wang, X. C. Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. ChemSusChem, in press, DOI: 10.1002/cssc.201600850.

  37. Zheng, D. D.; Cao, X.-N.; Wang, X. C. Precise formation of a hollow carbon nitride structure with a Janus surface to promote water splitting by photoredox catalysis. Angew. Chem., Int. Ed. 2016, 55, 11512–11516.

    Article  Google Scholar 

  38. Zhang, G. G.; Lan, Z.-A.; Lin, L. H.; Lin, S.; Wang, X. C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 2016, 7, 3062–3066.

    Article  Google Scholar 

  39. Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

    Article  Google Scholar 

  40. Li, Y. X.; Ouyang, S. X.; Xu, H.; Wang, X.; Bi, Y. P.; Zhang, Y. F.; Ye, J. H. Constructing solid-gas-interfacial Fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm. J. Am. Chem. Soc. 2016, 138, 13289–13297.

    Article  Google Scholar 

  41. Zada, A.; Humayun, M.; Raziq, F.; Zhang, X. L.; Qu, Y.; Bai, L. L.; Qin, C. L.; Jing, L. Q.; Fu, H. G. Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190.

    Article  Google Scholar 

  42. Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 2015, 44, 1249–1257.

    Article  Google Scholar 

  43. Ong, W.-J.; Putri, L. K.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl. Catal. B 2016, 180, 530–543.

    Article  Google Scholar 

  44. Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem. Commun. 2015, 51, 858–861.

    Article  Google Scholar 

  45. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.

    Article  Google Scholar 

  46. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    Article  Google Scholar 

  47. Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 2016, 28, 9454–9477.

    Article  Google Scholar 

  48. Zhang, H.; Zhao, L. X.; Geng, F. L.; Guo, L.-H.; Wan, B.; Yang, Y. Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation. Appl. Catal. B 2016, 180, 656–662.

    Article  Google Scholar 

  49. Fang, S.; Xia, Y.; Lv, K. L.; Li, Q.; Sun, J.; Li, M. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B 2016, 185, 225–232.

    Article  Google Scholar 

  50. Jian, X.; Liu, X.; Yang, H.-M.; Li, J.-G.; Song, X.-L.; Dai, H.-Y.; Liang, Z.-H. Construction of carbon quantum dots/ proton-functionalized graphitic carbon nitride nanocomposite via electrostatic self-assembly strategy and its application. Appl. Surf. Sci. 2016, 370, 514–521.

    Article  Google Scholar 

  51. Guo, Y.; Yao, P. J.; Zhu, D. Q.; Gu, C. A novel method for the development of a carbon quantum dot/carbon nitride hybrid photocatalyst that responds to infrared light irradiation. J. Mater. Chem. A 2015, 3, 13189–13192.

    Article  Google Scholar 

  52. Xia, X. Y.; Deng, N.; Cui, G. W.; Xie, J. F.; Shi, X. F.; Zhao, Y. Q.; Wang, Q.; Wang, W.; Tang, B. NIR light induced H2 evolution by a metal-free photocatalyst. Chem. Commun. 2015, 51, 10899–10902.

    Google Scholar 

  53. Li, H. T.; Zhang, X. Y.; MacFarlane, D. R. Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2015, 5, 1401077.

    Article  Google Scholar 

  54. Atkin, P.; Daeneke, T.; Wang, Y.; Carey, B. J.; Berean, K. J.; Clark, R. M.; Ou, J. Z.; Trinchi, A.; Cole, I. S.; Kalantar-Zadeh, K. 2D WS2/carbon dot hybrids with enhanced photocatalytic activity. J. Mater. Chem. A 2016, 4, 13563–13571.

    Article  Google Scholar 

  55. Miao, R.; Luo, Z.; Zhong, W.; Chen, S.-Y.; Jiang, T.; Dutta, B.; Nasr, Y.; Zhang, Y. S.; Suib, S. L. Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Appl. Catal. B 2016, 189, 26–38.

    Article  Google Scholar 

  56. Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T. et al. In situ bond modulation of graphitic carbon nitride to construct p–n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 2016, 26, 6822–6829.

    Article  Google Scholar 

  57. Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

    Article  Google Scholar 

  58. Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

    Article  Google Scholar 

  59. Tian, J.; Leng, Y. H.; Zhao, Z. H.; Xia, Y.; Sang, Y. H.; Hao, P.; Zhan, J.; Li, M. C.; Liu, H. under UV,visible, and near-infrared irradiation. Nano Energy 2015, 11, 419–427.

    Article  Google Scholar 

  60. Di, J.; Xia, J. X.; Ji, M. X.; Xu, L.; Yin, S.; Zhang, Q.; Chen, Z. G.; Li, H. M. Carbon quantum dots in situ coupling to bismuth oxyiodide via reactable ionic liquid with enhanced photocatalytic molecular oxygen activation performance. Carbon 2016, 98, 613–623.

    Article  Google Scholar 

  61. Yang, P. J.; Zhao, J. H.; Wang, J.; Cui, H. J.; Li, L.; Zhu, Z. P. Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Adv. 2015, 5, 21332–21335.

    Article  Google Scholar 

  62. Ding, H.; Wei, J.-S.; Xiong, H.-M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 2014, 6, 13817–13823.

    Article  Google Scholar 

  63. Ma, Y. J.; Li, X. L.; Yang, Z.; Xu, S. S.; Zhang, W.; Su, Y. J.; Hu, N. T.; Lu, W. J.; Feng, J.; Zhang, Y. F. Morphology control and photocatalysis enhancement by in situ hybridization of cuprous oxide with nitrogen-doped carbon quantum dots. Langmuir 2016, 32, 9418–9427.

    Article  Google Scholar 

  64. She, X. J.; Wu, J. J.; Zhong, J.; Xu, H.; Yang, Y. C.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D. L.; Li, H. M. et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy 2016, 27, 138–146.

    Article  Google Scholar 

  65. Putri, L. K.; Ong, W.-J.; Chang, W. S.; Chai, S.-P. Enhancement in the photocatalytic activity of carbon nitride through hybridization with light-sensitive AgCl for carbon dioxide reduction to methane. Catal. Sci. Technol. 2016, 6, 744–754.

    Article  Google Scholar 

  66. Wang, Y. G.; Bai, X.; Qin, H. F.; Wang, F.; Li, Y. G.; Li, X.; Kang, S. F.; Zuo, Y. H.; Cui, L. F. Facile one-step synthesis of hybrid graphitic carbon nitride and carbon composites as high-performance catalysts for CO2 photocatalytic conversion. ACS Appl. Mater. Interfaces 2016, 8, 17212–17219.

    Article  Google Scholar 

  67. Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/nitrogendoped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.

    Article  Google Scholar 

  68. Shi, L.; Chang, K.; Zhang, H. B.; Hai, X.; Yang, L. Q.; Wang, T.; Ye, J. H. Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light. Small 2016, 12, 4431–4439.

    Article  Google Scholar 

  69. Liu, Q.; Chen, T. X.; Guo, Y. R.; Zhang, Z. G.; Fang, X. M. Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl. Catal. B 2016, 193, 248–258.

    Article  Google Scholar 

  70. Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201601273.

  71. Li, H. Q.; Liu, Y. X.; Cui, Y. M.; Zhang, W. B.; Fu, C.; Wang, X. C. Facile synthesis and enhanced visible-light photoactivity of DyVO4/g-C3N4I composite semiconductors. Appl. Catal. B 2016, 183, 426–432.

    Article  Google Scholar 

  72. Wang, J.-C.; Yao, H.-C.; Fan, Z.-Y.; Zhang, L.; Wang, J.-S.; Zang, S.-Q.; Li, Z.-J. Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl. Mater. Interfaces 2016, 8, 3765–3775.

    Article  Google Scholar 

  73. Wang, J.-C.; Zhang, L.; Fang, W.-X.; Ren, J.; Li, Y.-Y.; Yao, H.-C.; Wang, J.-S.; Li, Z.-J. Enhanced photoreduction CO2 activity over direct Z-scheme a-Fe2O3/Cu2O heterostructures under visible light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 8631–8639.

    Article  Google Scholar 

  74. Fernando, K. A. S.; Sahu, S.; Liu, Y. M.; Lewis, W. K.; Guliants, E. A.; Jafariyan, A.; Wang, P.; Bunker, C. E.; Sun, Y.-P. Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 2015, 7, 8363–8376.

    Article  Google Scholar 

  75. Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

    Article  Google Scholar 

  76. Zhang, Z. J.; Zheng, T. T.; Li, X. M.; Xu, J. Y.; Zeng, H. B. Progress of carbon quantum dots in photocatalysis applications. Part. Part. Syst. Charact. 2016, 33, 457–472.

    Article  Google Scholar 

  77. Ong, W.-J.; Voon, S.-Y.; Tan, L.-L.; Goh, B. T.; Yong, S.-T.; Chai, S.-P. Enhanced daylight-induced photocatalytic activity of solvent exfoliated graphene (SEG)/ZnO hybrid nanocomposites toward degradation of reactive black 5. Ind. Eng. Chem. Res. 2014, 53, 17333–17344.

    Article  Google Scholar 

  78. Ong, W.-J.; Yeong, J.-J.; Tan, L.-L.; Goh, B. T.; Yong, S.-T.; Chai, S.-P. Synergistic effect of graphene as a co-catalyst for enhanced daylight-induced photocatalytic activity of Zn0.5Cd0.5S synthesized via an improved one-pot co-precipitationhydrothermal strategy. RSC Adv. 2014, 4, 59676–59685.

    Article  Google Scholar 

  79. Zou, J.-P.; Wu, D.-D.; Luo, J. M.; Xing, Q.-J.; Luo, X.-B.; Dong, W.-H.; Luo, S.-L.; Du, H.-M.; Suib, S. L. A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MBwith photoreduction of CO2. ACS Catal. 2016, 6, 6861–6867.

    Article  Google Scholar 

  80. Bhandary, N.; Singh, A. P.; Kumar, S.; Ingole, P. P.; Thakur, G. S.; Ganguli, A. K.; Basu, S. In situ solid-state synthesis of a AgNi/g-C3N4 nanocomposite for enhanced photoelectrochemical and photocatalytic activity. ChemSusChem 2016, 9, 2816–2823.

    Article  Google Scholar 

  81. An, X. Q.; Li, K. F.; Tang, J. W. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem 2014, 7, 1086–1093.

    Article  Google Scholar 

  82. Yin, W. J.; Bai, L. J.; Zhu, Y. Z.; Zhong, S. X.; Zhao, L. H.; Li, Z. Q.; Bai, S. Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 23133–23142.

    Article  Google Scholar 

  83. Zhang, Z. Y.; Huang, Y. Z.; Liu, K. C.; Guo, L. J.; Yuan, Q.; Dong, B. Multichannel-improved charge-carrier dynamics in well-designed hetero-nanostructural plasmonic photocatalysts toward highly efficient solar-to-fuels conversion. Adv. Mater. 2015, 27, 5906–5914.

    Article  Google Scholar 

  84. Sun, M. Y.; Qu, S. N.; Ji, W. Y.; Jing, P. T.; Li, D.; Qin, L.; Cao, J. S.; Zhang, H.; Zhao, J. L.; Shen, D. Z. Towards efficient photoinduced charge separation in carbon nanodots and TiO2 composites in the visible region. Phys. Chem. Chem. Phys. 2015, 17, 7966–7971.

    Article  Google Scholar 

  85. Ma, Z. J.; Sa, R. J.; Li, Q. H.; Wu, K. C. Interfacial electronic structure and charge transfer of hybrid graphene quantum dot and graphitic carbon nitride nanocomposites: Insights into high efficiency for photocatalytic solar water splitting. Phys. Chem. Chem. Phys. 2016, 18, 1050–1058.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Higher Education (MOHE) Malaysia and Universiti Sains Malaysia under NanoMITe grant scheme (No. 203/ PJKIMIA/6720009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wee-Jun Ong or Siang-Piao Chai.

Electronic supplementary material

12274_2016_1391_MOESM1_ESM.pdf

Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, WJ., Putri, L.K., Tan, YC. et al. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Res. 10, 1673–1696 (2017). https://doi.org/10.1007/s12274-016-1391-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1391-4

Keywords

Navigation