Skip to main content
Log in

Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Achieving a satisfactory energy–power combination in a supercapacitor that is based on all-carbon electrodes and operates in benign aqueous media instead of conventional organic electrolytes is a major challenge. For this purpose, we fabricated carbon nanoflakes (20–100 nm in thickness, 5-μm in width) containing an unparalleled combination of a large surface area (3,000 m2·g−1 range) and mesoporosity (up to 72%). These huge-surface area functionalized carbons (HSAFCs) also had a substantial oxygen and nitrogen content (~10 wt.% combined), with a significant fraction of redox-active carboxyl/phenol groups in an optimized specimen. Their unique structure and chemistry resulted from a tailored single-step carbonization-activation approach employing (2-benzimidazolyl) acetonitrile combined with potassium hydroxide (KOH). The HSAFCs exhibited specific capacitances of 474 F·g−1 at 0.5 A·g−1 and 285 F·g−1 at 100 A·g−1 (charging time < 3 s) in an aqueous 2 M KOH solution. These values are among the highest reported, especially at high currents. When tested with a stable 1.8-V window in a 1 M Na2SO4 electrolyte, a symmetric supercapacitor device using the fabricated nanoflakes as electrodes yielded a normalized active mass of 24.4 Wh·kg−1 at 223 W·kg−1 and 7.3 Wh·kg−1 at 9,360 W·kg−1. The latter value corresponds to a charge time of <3 s. The cyclability of the devices was excellent, with 93% capacitance retention after 10,000 cycles. All the electrochemical results were achieved by employing electrodes with near-commercial mass loadings of 8 mg·cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  2. Lei, Z. B.; Zhang, J. T.; Zhang, L. L.; Kumar, N. A.; Zhao, X. S. Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy Environ. Sci. 2016, 9, 1891–1930.

    Article  Google Scholar 

  3. Zhao, Y.; Ding, Y.; Li, Y. T.; Peng, L. L.; Byon, H. R.; Goodenough, J. B.; Yu, G. H. A chemistry and material perspective on lithium redox flow batteries towards highdensity electrical energy storage. Chem. Soc. Rev. 2015, 44, 7968–7996.

    Article  Google Scholar 

  4. Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 2013, 6, 1388–1414.

    Article  Google Scholar 

  5. Candelaria, S. L.; Shao, Y. Y.; Zhou, W.; Li, X. L.; Xiao, J.; Zhang, J. G.; Wang, Y.; Liu, J.; Li, J. H.; Cao, G. Z. Nanostructured carbon for energy storage and conversion. Nano Energy 2012, 1, 195–220.

    Article  Google Scholar 

  6. Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

    Article  Google Scholar 

  7. Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.

    Article  Google Scholar 

  8. Zhong, J.; Yang, Z. Y.; Mukherjee, R.; Thomas, A. V.; Zhu, K.; Sun, P. Z.; Lian, J.; Zhu, H. W.; Koratkar, N. Carbon nanotube sponges as conductive networks for supercapacitor devices. Nano Energy 2013, 2, 1025–1030.

    Article  Google Scholar 

  9. Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

    Article  Google Scholar 

  10. Li, Z.; Xu, Z. W.; Wang, H. L.; Ding, J.; Zahiri, B.; Holt, C. M. B.; Tan, X. H.; Mitlin, D. Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 2014, 7, 1708–1718.

    Article  Google Scholar 

  11. Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 2013, 6, 1249–1259.

    Article  Google Scholar 

  12. Shao, Y. Y.; Xiao, J.; Wang, W.; Engelhard, M.; Chen, X. L.; Nie, Z. M.; Gu, M.; Saraf, L. V.; Exarhos, G.; Zhang, J. G. et al. Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett. 2013, 13, 3909–3914.

    Article  Google Scholar 

  13. Wei, L.; Sevilla, M.; Fuertes, A. B.; Mokaya, R.; Yushin, G. Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv. Funct. Mater. 2012, 22, 827–834.

    Article  Google Scholar 

  14. Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 2008, 47, 373–376.

    Article  Google Scholar 

  15. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  16. Zheng, X. Y.; Luo, J. Y.; Lv, W.; Wang, D. W.; Yang, Q. H. Two-dimensional porous carbon: Synthesis and ion-transport properties. Adv. Mater. 2015, 27, 5388–5395.

    Article  Google Scholar 

  17. Yuan, K.; Xu, Y. Z.; Uihlein, J.; Brunklaus, G.; Shi, L.; Heiderhoff, R.; Que, M. M.; Forster, M.; Chassé, T.; Pichler, T. et al. Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors. Adv. Mater. 2015, 27, 6714–6721.

    Article  Google Scholar 

  18. Wang, H. L.; Xu, Z. W.; Kohandehghan, A.; Li, Z.; Cui, K.; Tan, X. H.; Stephenson, T. J.; King' ondu, C. K.; Holt, C. M. B.; Olsen, B. C. et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 2013, 7, 5131–5141.

    Article  Google Scholar 

  19. Jordan, R. S.; Wang, Y.; McCurdy, R. D.; Yeung, M. T.; Marsh, K. L.; Khan, S. I.; Kaner, R. B.; Rubin, Y. Synthesis of graphene nanoribbons via the topochemical polymerization and subsequent aromatization of a diacetylene precursor. Chem 2016, 1, 78–90.

    Article  Google Scholar 

  20. Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.

    Google Scholar 

  21. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  Google Scholar 

  22. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    Article  Google Scholar 

  23. Qie, L.; Chen, W. M.; Xu, H. H.; Xiong, X. Q.; Jiang, Y.; Zou, F.; Hu, X. L.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2497–2504.

    Article  Google Scholar 

  24. Zhu, H.; Wang, X. L.; Liu, X. X.; Yang, X. R. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors. Adv. Mater. 2012, 24, 6524–6529.

    Article  Google Scholar 

  25. Wu, Z. Y.; Liang, H. W.; Li, C.; Hu, B. C.; Xu, X. X.; Wang, Q.; Chen, J. F.; Yu, S. H. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 2014, 7, 1861–1872.

    Article  Google Scholar 

  26. Li, Y. J.; Wang, G. L.; Wei, T.; Fan, Z. J.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165–175.

    Article  Google Scholar 

  27. Guo, Z. Y.; Xiao, Z.; Ren, G. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M.; Jiang, L. Natural tea-leaf-derived, ternary-doped 3D porous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2016, 9, 1244–1255.

    Article  Google Scholar 

  28. Jiang, L. L.; Sheng, L. Z.; Chen, X.; Wei, T.; Fan, Z. J. Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. J. Mater. Chem. A 2016, 4, 11388–11396.

    Article  Google Scholar 

  29. Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2014, 7, 379–386.

    Article  Google Scholar 

  30. Xu, Z. X.; Zhuang, X. D.; Yang, C. Q.; Cao, J.; Yao, Z. Q.; Tang, Y. P.; Jiang, J. Z.; Wu, D. Q.; Feng, X. L. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 2016, 28, 1981–1987.

    Article  Google Scholar 

  31. Chen, W.; Rakhi, R. B.; Hedhili, M. N.; Alshareef, H. N. Shape-controlled porous nanocarbons for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 5236–5243.

    Article  Google Scholar 

  32. Tang, J. L.; Etacheri, V.; Pol, V. G. From allergens to battery anodes: Nature-inspired, pollen derived carbon architectures for room- and elevated-temperature Li-ion storage. Sci. Rep. 2016, 6, 20290.

    Article  Google Scholar 

  33. Pol, V. G.; Shrestha, L. K.; Ariga, K. Tunable, functional carbon spheres derived from rapid synthesis of resorcinolformaldehyde resins. ACS Appl. Mater. Interfaces 2014, 6, 10649–10655.

    Article  Google Scholar 

  34. Xiang, F.; Zhong, J.; Gu, N. Y.; Mukherjee, R.; Oh, I. K.; Koratkar, N.; Yang, Z. Y. Far-infrared reduced graphene oxide as high performance electrodes for supercapacitors. Carbon 2014, 75, 201–208.

    Article  Google Scholar 

  35. Zhou, Y.; Candelaria, S. L.; Liu, Q.; Huang, Y. X.; Uchaker, E.; Cao, G. Z. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. J. Mater. Chem. A 2014, 2, 8472–8482.

    Article  Google Scholar 

  36. Long, C. L.; Qi, D. P.; Wei, T.; Yan, J.; Jiang, L. L.; Fan, Z. J. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 2014, 24, 3953–3961.

    Article  Google Scholar 

  37. Zhou, Y.; Candelari, S. L.; Liu, Q.; Uchaker, E.; Cao, G. Z. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy 2015, 12, 567–577.

    Article  Google Scholar 

  38. Lin, R. Y.; Taberna, P. L.; Fantini, S.; Presser, V.; Pérez, C. R.; Malbosc, F.; Rupesinghe, N. L.; Teo, K. B. K.; Gogotsi, Y.; Simon, P. Capacitive energy storage from–50 to 100 °C using an ionic liquid electrolyte. J. Phys. Chem. Lett. 2011, 2, 2396–2401.

    Article  Google Scholar 

  39. Ahmed, B.; Xia, C.; Alshareef, H. N. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage. Nano Today 2016, 11, 250–271.

    Article  Google Scholar 

  40. Wang, H. L.; Gao, Q. M.; Hu, J. High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 2009, 131, 7016–7022.

    Article  Google Scholar 

  41. Zheng, X. Y.; Lv, W.; Tao, Y.; Shao, J. J.; Zhang, C.; Liu, D. H.; Luo, J. Y.; Wang, D. W.; Yang, Q. H. Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem. Mater. 2014, 26, 6896–6903.

    Article  Google Scholar 

  42. Sun, L.; Tian, C. G.; Li, M. T.; Meng, X. Y.; Wang, L.; Wang, R. H.; Yin, J.; Fu, H. G. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 2013, 1, 6462–6470.

    Article  Google Scholar 

  43. Wang, H. L.; Mitlin, D.; Ding, J.; Li, Z.; Cui, K. Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J. Mater. Chem. A 2016, 4, 5149–5158.

    Article  Google Scholar 

  44. Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.

    Article  Google Scholar 

  45. Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129.

    Article  Google Scholar 

  46. Lotfabad, E. M.; Kalisvaart, P.; Kohandehghan, A.; Karpuzov, D.; Mitlin, D. Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. J. Mater. Chem. A 2014, 2, 19685–19695.

    Article  Google Scholar 

  47. Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004–11015.

    Article  Google Scholar 

  48. Qian, W. J.; Zhu, J. Y.; Zhang, Y.; Wu, X.; Yan, F. Condiment-derived 3D architecture porous carbon for electrochemical supercapacitors. Small 2015, 11, 4959–4969.

    Article  Google Scholar 

  49. Long, C. L.; Jiang, L. L.; Wu, X. L.; Jiang, Y. T.; Yang, D. R.; Wang, C. K.; Wei, T.; Fan, Z. J. Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon 2015, 93, 412–420.

    Article  Google Scholar 

  50. Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.

    Article  Google Scholar 

  51. Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 2009, 19, 438–447.

    Article  Google Scholar 

  52. Li, Z.; Xu, Z. W.; Tan, X. H.; Wang, H. L.; Holt, C. M. B.; Stephenson, T.; Olsen, B. C.; Mitlin, D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 2013, 6, 871–878.

    Article  Google Scholar 

  53. Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X. H.; Xu, Z. W.; Wang, H. L.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy. Mater. 2012, 2, 431–437.

    Article  Google Scholar 

  54. Hulicova-Jurcakova, D.; Kodama, M.; Shiraishi, S.; Hatori, H.; Zhu, Z. H.; Lu, G. Q. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 2009, 19, 1800–1809.

    Article  Google Scholar 

  55. Oh, Y. J.; Yoo, J. J.; Kim, Y. I.; Yoon, J. K.; Yoon, H. N.; Kim, J. H.; Park, S. B. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim. Acta 2014, 116, 118–128.

    Article  Google Scholar 

  56. Bichat, M. P.; Raymundo-Piñ ero, E.; Bé guin, F. High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 2010, 48, 4351–4361.

    Article  Google Scholar 

  57. Gao, Q.; Demarconnay, L.; Raymundo-Piñ ero, E.; Bé guin, F. Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 2012, 5, 9611–9617.

    Article  Google Scholar 

  58. Wang, H. L.; Li, Z.; Tak, J. K.; Holt, C. M. B.; Tan, X. H.; Xu, Z. W.; Amirkhiz, B. S.; Hayfield, D.; Anyia, A.; Stephenson, T. et al. Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon 2013, 57, 317–328.

    Article  Google Scholar 

  59. Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Mesopore-aspect-ratio dependence of ion transport in rodtype ordered mesoporous carbon. J. Phys. Chem. C 2008, 112, 9950–9955.

    Article  Google Scholar 

  60. Tian, W. Q.; Gao, Q. M.; Tan, Y. L.; Yang, K.; Zhu, L. H.; Yang, C. X.; Zhang, H. Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 2015, 3, 5656–5664.

    Article  Google Scholar 

  61. Chen, C.; Xu, G. B.; Wei, X. L.; Yang, L. W. A macroscopic three-dimensional tetrapod-separated graphene-like oxygenated N-doped carbon nanosheet architecture for use in supercapacitors. J. Mater. Chem. A 2016, 4, 9900–9909.

    Article  Google Scholar 

  62. Zhang, Y. Q.; Liu, X.; Wang, S. L.; Dou, S. X.; Li, L. Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J. Mater. Chem. A 2016, 4, 10869–10877.

    Article  Google Scholar 

  63. Zhang, Y.; Tao, B. L.; Xing, W.; Zhang, L.; Xue, Q. Z.; Yan, Z. F. Sandwich-like nitrogen-doped porous carbon/ graphene nanoflakes with high-rate capacitive performance. Nanoscale 2016, 8, 7889–7898.

    Article  Google Scholar 

  64. Zhang, X. M.; Jiao, Y. Q.; Sun, L.; Wang, L.; Wu, A. P.; Yan, H. J.; Meng, M. C.; Tian, C. G.; Jiang, B. J.; Fu, H. G. GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors. Nanoscale 2016, 8, 2418–2427.

    Article  Google Scholar 

  65. Song, S. J.; Ma, F. W.; Wu, G.; Ma, D.; Geng, W. D.; Wan, J. F. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 2015, 3, 18154–18162.

    Article  Google Scholar 

  66. Ma, F. W.; Ma, D.; Wu, G.; Geng, W. D.; Shao, J. Q.; Song, S. J.; Wan, J. F.; Qiu, J. S. Construction of 3D nanostructure hierarchical porous graphitic carbons by chargeinduced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors. Chem. Commun. 2016, 52, 6673–6676.

    Article  Google Scholar 

  67. Cheng, P.; Gao, S. Y.; Zang, P. Y.; Yang, X. F.; Bai, Y. L.; Xu, H.; Liu, Z. H.; Lei, Z. B. Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 2015, 93, 315–324.

    Article  Google Scholar 

  68. Xu, J.; Tan, Z. Q.; Zeng, W. C.; Chen, G. X.; Wu, S. L.; Zhao, Y.; Ni, K.; Tao, Z. C.; Ikram, M.; Ji, H. X. et al. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 2016, 28, 5222–5228.

    Article  Google Scholar 

  69. Zhu, S.; Li, J. J.; Ma, L. Y.; Guo, L. C.; Li, Q. Y.; He, C. N.; Liu, E. Z.; He, F.; She, C. S.; Zhao, N. Q. Three-dimensional network of N-doped carbon ultrathin nanosheets with closely packed mesopores: Controllable synthesis and application in electrochemical energy storage. ACS Appl. Mater. Interfaces 2016, 8, 11720–11728.

    Article  Google Scholar 

  70. Cheng, P.; Li, T.; Yu, H.; Zhi, L.; Liu, Z. H.; Lei, Z. B. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J. Phys. Chem. C 2016, 120, 2079–2086.

    Article  Google Scholar 

  71. Liu, X. R.; Zheng, M. T.; Xiao, Y.; Yang, Y. H.; Yang, L. F.; Liu, Y. L.; Lei, B. F.; Dong, H. W.; Zhang, H. R.; Fu, H. G. Microtube bundle carbon derived from paulownia sawdust for hybrid supercapacitor electrodes. ACS Appl. Mater. Interfaces 2013, 5, 4667–4677.

    Article  Google Scholar 

  72. Li, M. J.; Liu, C. M.; Cao, H. B.; Zhao, H.; Zhang, Y.; Fan, Z. J. KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 14844–14851.

    Google Scholar 

  73. Hao, P.; Zhao, Z. H.; Leng, Y. H.; Tian, J.; Sang, Y. H.; Boughton, R. I.; Wong, C. P.; Liu, H.; Yang, B. Graphenebased nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 2015, 15, 9–23.

    Article  Google Scholar 

  74. Huang, Y. X.; Peng, L. L.; Liu, Y.; Zhao, G. J.; Chen, J. Y.; Yu, G. H. Biobased nano porous active carbon fibers for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 15205–15215.

    Article  Google Scholar 

  75. Sun, F.; Wu, H. B.; Liu, X.; Liu, F.; Zhou, H. H.; Gao, J. H.; Lu, Y. F. Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Res. 2016, 9, 3209–3221.

    Article  Google Scholar 

  76. Zhang, F.; Liu, T. Y.; Hou, G. H.; Kou, T. Y.; Yue, L.; Guan, R. F.; Li, Y. Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 2016, 9, 2875–2888.

    Article  Google Scholar 

  77. Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core–shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209–218.

    Article  Google Scholar 

  78. Ding, Y.; Yu, G. H. A bio-inspired, heavy-metal-free, dualelectrolyte liquid battery towards sustainable energy storage. Angew. Chem., Int. Ed. 2016, 55, 4772–4776.

    Google Scholar 

  79. Subramanian, V.; Luo, C.; Stephan, A. M.; Nahm, K. S.; Thomas, S.; Wei, B. Q. Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 2007, 111, 7527–7531.

    Article  Google Scholar 

  80. Bello, A.; Manyala, N.; Barzegar, F.; Khaleed, A. A.; Momodu, D. Y.; Dangbegnon, J. K. Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv. 2016, 6, 1800–1809.

    Article  Google Scholar 

  81. Wang, S. G.; Ren, Z. H.; Li, J. P.; Ren, Y. Q.; Zhao, L.; Yu, J. Cotton-based hollow carbon fibers with high specific surface area prepared by ammonia etching for supercapacitor application. RSC Adv. 2014, 4, 31300–31307.

    Article  Google Scholar 

  82. Li, J. P.; Ren, Z. H.; Ren, Y. Q.; Zhao, L.; Wang, S. G.; Yu, J. Activated carbon with micrometer-scale channels prepared from luffa sponge fibers and their application for supercapacitors. RSC Adv. 2014, 4, 35789–35796.

    Article  Google Scholar 

  83. Fic, K.; Lota, G.; Meller, M.; Frackowiak, E. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 2012, 5, 5842–5850.

    Article  Google Scholar 

  84. Jin, H. Y.; Peng, Z. H.; Tang, W. M.; Chan, H. L. W. Controllable functionalized carbon fabric for highperformance all-carbon-based supercapacitors. RSC Adv. 2014, 4, 33022–33028.

    Article  Google Scholar 

  85. Yuan, S. J.; Dai, X. H. Heteroatom-doped porous carbon derived from “all-in-one” precursor sewage sludge for electrochemical energy storage. RSC Adv. 2015, 5, 45827–45835.

    Article  Google Scholar 

  86. Wang, L. Q.; Wang, J. Z.; Jia, F.; Wang, C. Y.; Chen, M. M. Nanoporous carbon synthesised with coal tar pitch and its capacitive performance. J. Mater. Chem. A 2013, 1, 9498–9507.

    Article  Google Scholar 

  87. Lee, J. S. M.; Wu, T. H.; Alston, B. M.; Briggs, M. E.; Hasell, T.; Hu, C. C.; Cooper, A. I. Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors. J. Mater. Chem. A 2016, 4, 7665–7673.

    Article  Google Scholar 

  88. Lang, J. W.; Yan, X. B.; Liu, W. W.; Wang, R. T.; Xue, Q. J. Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. J. Power Sources 2012, 204, 220–229.

    Article  Google Scholar 

  89. Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. A symmetric supercapacitors based on graphene/ MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.

    Article  Google Scholar 

  90. Khomenko, V.; Raymundo-Piñero, E.; Béguin, F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J. Power Sources 2006, 153, 183–190.

    Article  Google Scholar 

  91. Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to financial supports from the National Natural Science Foundation of China (Nos. 51402272 and 21471139), Shandong Province Outstanding Youth Scientist Foundation Plan (No. BS2014CL024), Seed Fund from Ocean University of China, and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanlei Wang or David Mitlin.

Electronic supplementary material

12274_2017_1486_MOESM1_ESM.pdf

Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, N., Wang, H., Sui, Y. et al. Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading. Nano Res. 10, 1767–1783 (2017). https://doi.org/10.1007/s12274-017-1486-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1486-6

Keywords

Navigation