Skip to main content
Log in

Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

C dots (CDs) have shown great potential in bioimaging and phototherapy. However, it is challenging to manipulate their fluorescent properties and therapeutic efficacy to satisfy the requirements for clinic applications. In this study, we prepared S, Se-codoped CDs via a hydrothermal method and demonstrated that the doping resulted in excitation wavelength-independent near-infrared (NIR) emissions of the CDs, with peaks at 731 and 820 nm. Significantly, the CDs exhibited a photothermal conversion efficiency of ~58.2%, which is the highest reported value for C nanostructures and is comparable to that of Au nanostructures. Moreover, the CDs had a large two-photon absorption cross section (~30,045 GM), which allowed NIR emissions and the photothermal conversion of the CDs through the two-photon excitation (TPE) mechanism. In vitro and in vivo tests suggested that CDs can function as new multifunctional phototheranostic agents for the TPE fluorescence imaging and photothermal therapy of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826–2885.

    Article  Google Scholar 

  2. Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.

    Article  Google Scholar 

  3. Lim, E. K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y. M.; Lee, K. Nanomaterials for theranostics: Recent advances and future challenges. Chem. Rev. 2015, 115, 327–394.

    Article  Google Scholar 

  4. Lovell, J. F.; Liu, T. W. B.; Chen, J.; Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 2010, 110, 2839–2857.

    Article  Google Scholar 

  5. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

    Article  Google Scholar 

  6. Yuan, Y. Y.; Zhang, C. J.; Xu, S. D.; Liu, B. A self-reporting AIE probe with a built-in singlet oxygen sensor for targeted photodynamic ablation of cancer cells. Chem. Sci. 2016, 7, 1862–1866.

    Article  Google Scholar 

  7. Yuan, Y. Y.; Zhang, C. J.; Kwok, R. T. K.; Xu, S. D.; Zhang, R. Y.; Wu, J. E.; Tang, B. Z.; Liu, B. Light-up probe for targeted and activatable photodynamic therapy with realtime in situ reporting of sensitizer activation and therapeutic responses. Adv. Funct. Mater. 2015, 25, 6586–6595.

    Article  Google Scholar 

  8. Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013, 7, 2541–2550.

    Article  Google Scholar 

  9. Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488.

    Article  Google Scholar 

  10. Wang, K. K.; Zhang, Y. F.; Wang, J.; Yuan, A. H.; Sun, M. J.; Wu, J. H.; Hu, Y. Q. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421.

    Article  Google Scholar 

  11. Pang, X. J.; Wang, J. P.; Tan, X. X.; Guo, F.; Lei, M. Z.; Ma, M.; Yu, M.; Tan, F. P.; Li, N. Dual-modal imagingguided theranostic nanocarriers based on indocyanine green and mTOR inhibitor rapamycin. ACS Appl. Mater. Interfaces 2016, 8, 13819–13829.

    Article  Google Scholar 

  12. Shi, C. H.; Wu, J. B.; Pan, D. F. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J. Biomed. Opt. 2016, 21, 050901.

    Article  Google Scholar 

  13. Li, N.; Zhao, P. X.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem., Int. Ed. 2014, 53, 1756–1789.

    Article  Google Scholar 

  14. Xu, H.; Li, Q.; Wang, L. H.; He, Y.; Shi, J. Y.; Tang, B.; Fan, C. H. Nanoscale optical probes for cellular imaging. Chem. Soc. Rev. 2014, 43, 2650–2661.

    Article  Google Scholar 

  15. Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.

    Google Scholar 

  16. Ge, J. C.; Jia, Q. Y.; Liu, W. M.; Guo, L.; Liu, Q. Y.; Lan, M. H.; Zhang, H. Y.; Meng, X. M.; Wang, P. F. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 2015, 27, 4169–4177.

    Article  Google Scholar 

  17. Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y. P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 2013, 46, 171–180.

    Article  Google Scholar 

  18. Morimoto, Y.; Horie, M.; Kobayashi, N.; Shinohara, N.; Shimada, M. Inhalation toxicity assessment of carbon-based nanoparticles. Acc. Chem. Res. 2013, 46, 770–781.

    Article  Google Scholar 

  19. Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    Article  Google Scholar 

  20. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

    Article  Google Scholar 

  21. Zeng, J.; Goldfeld, D.; Xia, Y. N. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew. Chem., Int. Ed. 2013, 52, 4169–4173.

    Article  Google Scholar 

  22. Ji, M. W.; Xu, M.; Zhang, W.; Yang, Z. Z.; Huang, L.; Liu, J. J.; Zhang, Y.; Gu, L.; Yu, Y. X.; Hao, W. C. et al. Structurally well-defined Au@Cu2-xS core–shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv. Mater. 2016, 28, 3094–3101.

    Article  Google Scholar 

  23. Song, J. B.; Wang, F.; Yang, X. Y.; Ning, B.; Harp, M. G.; Culp, S. H.; Hu, S.; Huang, P.; Nie, L. M.; Chen, J. Y. et al. Gold nanoparticle coated carbon nanotube ring with enhanced Raman scattering and photothermal conversion property for theranostic applications. J. Am. Chem. Soc. 2016, 138, 7005–7015.

    Article  Google Scholar 

  24. Hu, Y.; Wang, R. Z.; Wang, S. G.; Ding, L.; Li, J. C.; Luo, Y.; Wang, X. L.; Shen, M. W.; Shi, X. Y. Multifunctional Fe3O4 @ Au core/shell nanostars: A unique platform for multimode imaging and photothermal therapy of tumors. Sci. Rep. 2016, 6, 28325.

    Article  Google Scholar 

  25. Li, D.; Han, D.; Qu, S. N.; Liu, L.; Jing, P. T.; Zhou, D.; Ji, W. Y.; Wang, X. Y.; Zhang, T. F.; Shen, D. Z. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light: Sci. Appl. 2016, 5, e16120.

    Article  Google Scholar 

  26. Hu, S. L.; Trinchi, A.; Atkin, P.; Cole, I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem., Int. Ed. 2015, 54, 2970–2974.

    Article  Google Scholar 

  27. Tang, L. B.; Ji, R. B.; Li, X. M.; Bai, G. X.; Liu, C. P.; Hao, J. H.; Lin, J. Y.; Jiang, H. X.; Teng, K. S.; Yang, Z. B. et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 2014, 8, 6312–6320.

    Article  Google Scholar 

  28. Wu, L.; Luderer, M.; Yang, X. X.; Swain, C.; Zhang, H. Y.; Nelson, K.; Stacy, A. J.; Shen, B. Z.; Lanza, G. M.; Pan, D. J. Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging. Theranostics 2013, 3, 677–686.

    Article  Google Scholar 

  29. Shen, Y. Z.; Shuhendler, A. J.; Ye, D. J.; Yu, J. J.; Chen, H. Y. Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6725–6741.

    Article  Google Scholar 

  30. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

    Article  Google Scholar 

  31. Fowley, C.; McHale, A. P.; McCaughan, B.; Fraix, A.; Sortino, S.; Callan, J. F. Carbon quantum dot-NO photoreleaser nanohybrids for two-photon phototherapy of hypoxic tumors. Chem. Commun. 2015, 51, 81–84.

    Article  Google Scholar 

  32. Wang, J.; Zhang, Z. H.; Zha, S.; Zhu, Y. Y.; Wu, P. Y.; Ehrenberg, B.; Chen, J. Y. Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density. Biomaterials 2014, 35, 9372–9381.

    Article  Google Scholar 

  33. Li, J. L.; Bao, H. C.; Hou, X. L.; Sun, L.; Wang, X. G.; Gu, M. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angew. Chem., Int. Ed. 2012, 51, 1830–1834.

    Article  Google Scholar 

  34. Lan, M. H.; Wu, J. S.; Liu, W. M.; Zhang, W. J.; Ge, J. C.; Zhang, H. Y.; Sun, J. Y.; Zhao, W. W.; Wang, P. F. Copolythiophene-derived colorimetric and fluorometric sensor for visually supersensitive determination of lipopolysaccharide. J. Am. Chem. Soc. 2012, 134, 6685–6694.

    Article  Google Scholar 

  35. Guo, X.; Wang, C. F.; Yu, Z. Y.; Chen, L.; Chen, S. Facile access to versatile fluorescent carbon dots toward lightemitting diodes. Chem. Commun. 2012, 48, 2692–2694.

    Article  Google Scholar 

  36. Kozák, O.; Sudolská, M.; Pramanik, G.; Cígler, P.; Otyepka, M.; Zboril, R. Photoluminescent carbon nanostructures. Chem. Mater. 2016, 28, 4085–4128.

    Article  Google Scholar 

  37. Yang, S. W.; Sun, J.; Li, X. B.; Zhou, W.; Wang, Z. Y.; He, P.; Ding, G. Q.; Xie, X. M.; Kang, Z. H.; Jiang, M. H. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J. Mater. Chem. A 2014, 2, 8660–8667.

    Article  Google Scholar 

  38. Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure Appl. Chem. 2011, 83, 2213–2228.

    Article  Google Scholar 

  39. Yang, F.; Zhao, M. L.; Zheng, B. Z.; Xiao, D.; Wu, L.; Guo, Y. Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J. Mater. Chem. 2012, 22, 25471–25479.

    Article  Google Scholar 

  40. Zhao, S. J.; Lan, M. H.; Zhu, X. Y.; Xue, H. T.; Ng, T.-W.; Meng, X. M.; Lee, C.-S.; Wang, P. F.; Zhang, W. J. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl. Mater. Interfaces 2015, 7, 17054–17060.

    Article  Google Scholar 

  41. Turro, N. J. Modern Molecular Photochemistry; University Science Books: Mill Valley, CA, 1991.

    Google Scholar 

  42. Englman, R.; Jortner, J. The energy gap law for radiationless transitions in large molecules. J. Mol. Phys. 1970, 18, 145–164.

    Article  Google Scholar 

  43. Lan, M. H.; Zhang, J. F.; Zhu, X. Y.; Wang, P. F.; Chen, X. F.; Lee, C. S.; Zhang, W. J. Highly stable organic fluorescent nanorods for living-cell imaging. Nano Res. 2015, 8, 2380–2389.

    Article  Google Scholar 

  44. Sharma, A.; Gadly, T.; Gupta, A.; Ballal, A.; Ghosh, S. K.; Kumbhakar, M. Origin of excitation dependent fluorescence in carbon nanodots. J. Phys. Chem. Lett. 2016, 7, 3695–3702.

    Article  Google Scholar 

  45. Xu, Q. F.; Zhou, Q.; Hua, Z.; Xue, Q.; Zhang, C. F.; Wang, X. Y.; Pan, D. Y.; Xiao, M. Single-particle spectroscopic measurements of fluorescent graphene quantum dots. ACS Nano 2013, 7, 10654–10661.

    Article  Google Scholar 

  46. Khan, S.; Gupta, A.; Verma, N. C.; Nandi, C. K. Timeresolved emission reveals ensemble of emissive states as the origin of multicolor fluorescence in carbon dots. Nano Lett. 2015, 15, 8300–8305.

    Article  Google Scholar 

  47. Singh, S.; Aggarwal, A.; Bhupathiraju, N. V. S. D. K.; Arianna, G.; Tiwari, K.; Drain, C. M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 2015, 115, 10261–10306.

    Article  Google Scholar 

  48. Pu, S. C.; Yang, M. J.; Hsu, C. C.; Lai, C. W.; Hsieh, C. C.; Lin, S. H.; Cheng, Y. M.; Chou, P. T. The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots. Small 2006, 2, 1308–1313.

    Article  Google Scholar 

  49. Liu, Q.; Guo, B. D.; Rao, Z. Y.; Zhang, B. H.; Gong, J. R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013, 13, 2436–2441.

    Article  Google Scholar 

  50. Kong, B.; Zhu, A. W.; Ding, C. Q.; Zhao, X. M.; Li, B.; Tian, Y. Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv. Mater. 2012, 24, 5844–5848.

    Article  Google Scholar 

  51. Peng, X. J.; Yang, Z. G.; Wang, J. Y.; Fan, J. L.; He, Y. X.; Song, F. L.; Wang, B. S.; Sun, S. G.; Qu, J. L.; Qi, J. et al. Fluorescence ratiometry and fluorescence lifetime imaging: Using a single molecular sensor for dual mode imaging of cellular viscosity. J. Am. Chem. Soc. 2011, 133, 6626–6635.

    Article  Google Scholar 

  52. Fan, M.; Yao, J.; Tung, C.-H. Molecular Photochemistry and Materials Science; Chinese Science Publishing & Media Ltd.: Beijing, 2008. (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the General Research Fund of Hong Kong (No. 11338516), and the National Natural Science Foundation of China (Nos. 51572269 and 51672230).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Wang or Wenjun Zhang.

Electronic supplementary material

12274_2017_1528_MOESM1_ESM.pdf

Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, M., Zhao, S., Zhang, Z. et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res. 10, 3113–3123 (2017). https://doi.org/10.1007/s12274-017-1528-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1528-0

Keywords

Navigation