Skip to main content
Log in

N-doped carbon nanocages: Bifunctional electrocatalysts for the oxygen reduction and evolution reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly efficient metal-free, carbon-based, bi-functional electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have attracted increased attention for use in electrochemical energy conversion systems, owing to their low cost and high activity. In this work, N-doped carbon nanocages (N-CCs) with a porous self-supported architecture and high specific surface area are synthesized by a facile interfacial assembly synthetic route. The materials are comprehensively characterized by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption–desorption experiments, X-ray diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammetry, chronoamperometry, and linear sweep voltammetry demonstrate that the as-prepared N-CC could serve as an effective metal-free electrocatalyst with excellent catalytic activity, long-term operation durability, and excellent methanol tolerance for the ORR in alkaline media. In the presence of 3 mM methanol, the half wave potential of the N-CCs for the ORR is 190 mV; this is more positive than that of the commercial Pt/C electrocatalyst. Meanwhile, the N-CCs also show an OER activity comparable to that of the commercial Ru/C electrocatalyst, revealing their bifunctional property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  Google Scholar 

  2. Shao, M. H.; Chang, Q. W.; Dodelet, J.-P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

    Article  Google Scholar 

  3. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  Google Scholar 

  4. Mao, S.; Wen, Z. H.; Huang, T. Z.; Hou, Y.; Chen, J. H. High-performance bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ. Sci. 2014, 7, 609–616.

    Article  Google Scholar 

  5. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J. Mater. Chem. 2011, 21, 7376–7380.

    Article  Google Scholar 

  6. Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.

    Article  Google Scholar 

  7. Ma, R. G.; Ren, X. D.; Xia, B. Y.; Zhou, Y.; Sun, C.; Liu, Q.; Liu, J. J.; Wang, J. C. Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 2016, 9, 808–819.

    Article  Google Scholar 

  8. Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.

    Article  Google Scholar 

  9. Cai, J.; Zheng, P.; Mahmood, Q. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Water Sci. Technol. 2016, 73, 947–954.

    Google Scholar 

  10. Ma, M.; You, S. J.; Wang, W.; Liu, G. S.; Qi, D.P.; Chen, X. D.; Qu, J. H.; Ren, N. Q. Biomass-derived porous Fe3C/t ungsten carbide/graphitic carbon nanocomposite for efficient electrocatalysis of oxygen reduction. ACS Appl. Mater. Interfaces 2016, 8, 32307–32316.

    Article  Google Scholar 

  11. Zhu, C. Z.; Fu, S. F.; Song, J. H.; Shi, Q. R.; Su, D.; Engelhard, M. H.; Li, X. L.; Xiao, D. D.; Li, D. S.; Estevez, L. et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts. Small 2017, 13, 1603407.

    Article  Google Scholar 

  12. Li, J. J.; Zhang, Y. M.; Zhang, X. H.; Huang, J. Z.; Han, J. C.; Zhang, Z. H.; Han, X. J.; Xu, P.; Song, B. S,N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts. ACS Appl. Mater. Interfaces 2017, 9, 398–405.

    Article  Google Scholar 

  13. He, Y. F.; Gehrig, D.; Zhang, F.; Lu, C.B.; Zhang, C.; Cai, M.; Wang, Y. Y.; Laquai, F.; Zhuang, X. D.; Feng, X. L. Highly efficient electrocatalysts for oxygen reduction reaction based on 1D ternary doped porous carbons derived from carbon nanotube directed conjugated microporous polymers. Adv. Funct. Mater. 2016, 26, 8255–8265.

    Article  Google Scholar 

  14. Xu, W.; Wu, Z. C.; Tao, S. W. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells. J. Mater. Chem. A 2016, 4, 16272–16287.

    Article  Google Scholar 

  15. Ma, R.G.; Xia, B. Y.; Zhou, Y.; Li, P. X.; Chen, Y. F.; Liu, Q.; Wang, J. C. Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction. Carbon 2016, 102, 58–65.

    Article  Google Scholar 

  16. Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metalfree bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

    Article  Google Scholar 

  17. Che, G. L.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998, 393, 346–349.

    Article  Google Scholar 

  18. Kongkanand, A.; Kuwabata, S.; Girishkumar, G.; Kamat, P. V. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 2006, 22, 2392–2396.

    Article  Google Scholar 

  19. Maldonado, S.; Morin, S.; Stevenson, K. J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 2006, 44, 1429–1437.

    Article  Google Scholar 

  20. Nagaiah, T. C.; Kundu, S.; Bron, M.; Muhler, M.; Schuhmann, W. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochem. Commun. 2010, 12, 338–341.

    Article  Google Scholar 

  21. Mo, Z. Y.; Zheng, R. P.; Peng, H. L.; Liang, H. G.; Liao, S. J. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application. J. Power Sources 2014, 245, 801–807.

    Article  Google Scholar 

  22. Wang, H. T.; Wang, W.; Xu, Y. Y.; Dong, S.; Xiao, J. W.; Wang, F.; Liu, H. F.; Xia, B. Y. Hollow nitrogen-doped carbon spheres with Fe3O4 nanoparticles encapsulated as a highly active oxygen-reduction catalyst. ACS Appl. Mater. Interfaces 2017, 9, 10610–10617.

    Article  Google Scholar 

  23. Trogadas, P.; Ramani, V.; Strasser, P.; Fuller, T. F.; Coppens, M. O. Hierarchically structured nanomaterials for electrochemical energy conversion. Angew. Chem., Int. Ed. 2016, 55, 122–148.

    Article  Google Scholar 

  24. Bai, Z. Y.; Yang, L.; Guo, Y. M.; Zheng, Z.; Hu, C. G.; Xu, P. L. High-efficiency palladium catalysts supported on ppymodified C60 for formic acid oxidation. Chem. Commun. 2011, 47, 1752–1754.

    Article  Google Scholar 

  25. Yang, S. D.; Dong, J.; Yao, Z. H.; Shen, C. M.; Shi, X. Z.; Tian, Y.; Lin, S. X.; Zhang, X. G. One-pot synthesis of graphene-supported monodisperse pd nanoparticles as catalyst for formic acid electro-oxidation. Sci. Rep. 2014, 4, 4501.

    Article  Google Scholar 

  26. Ali, M.; Jha, M.; Das, S. K.; Saha, S. K. Hydrogen-bondinduced microstructural transition of ionic micelles in the presence of neutral naphthols: Ph dependent morphology and location of surface activity. J. Phys. Chem. B 2009, 113, 15563–15571.

    Article  Google Scholar 

  27. Yu, Q. Y.; Hui, J. F.; Wang, P. P.; Xu, B.; Zhuang, J.; Wang, X. Hydrothermal synthesis of mesoporous silica spheres: Effect of the cooling process. Nanoscale 2012, 4, 7114–7120.

    Article  Google Scholar 

  28. Valle-Vigón, P.; Sevilla, M.; Fuertes, A. B. Mesostructured silica–carbon composites synthesized by employing surfactants as carbon source. Micropor. Mesopor. Mater. 2010, 134, 165–174.

    Article  Google Scholar 

  29. Li, Y.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012, 134, 15–18.

    Article  Google Scholar 

  30. Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    Article  Google Scholar 

  31. Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J. Am. Chem. Soc. 2002, 124, 9382–9383.

    Article  Google Scholar 

  32. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  33. Wan, K.; Tan, A. D.; Yu, Z. P.; Liang, Z. X.; Piao, J. H.; Tsiakaras, P. 2D nitrogen-doped hierarchically porous carbon: Key role of low dimensional structure in favoring electrocatalysis and mass transfer for oxygen reduction reaction. Appl. Catal. B-Environ. 2017, 209, 447–454.

    Article  Google Scholar 

  34. Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.

    Article  Google Scholar 

  35. Liu, Y. Y.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Li, C. Z. Transition metals (Fe, Co, and Ni) encapsulated in nitrogendoped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J. Mater. Chem. A 2016, 4, 1694–1701.

    Article  Google Scholar 

  36. Faisal, S. N.; Haque, E.; Noorbehesht, N.; Zhang, W. M.; Harris, A. T.; Church, T. L.; Minett, A. I. Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Adv. 2017, 7, 17950–17958.

    Article  Google Scholar 

  37. Jiang, H.; Wang, Y. Q.; Hao, J. Y.; Liu, Y. S.; Li, W. Z.; Li, J. N and P co-functionalized three-dimensional porous carbon networks as efficient metal-free electrocatalysts for oxygen reduction reaction. Carbon 2017, 122, 64–73

    Article  Google Scholar 

  38. Yu, H. J.; Shang, L.; Bian, T.; Shi, R.; Waterhouse, G. I. N.; Zhao, Y. F.; Zhou, C.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 2016, 28, 5080–5086.

    Article  Google Scholar 

  39. Tao, L.; Wang, Q.; Dou, S.; Ma, Z. L.; Huo, J.; Wang, S. Y.; Dai, L. M. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2016, 52, 2764–2767.

    Article  Google Scholar 

  40. Men, B.; Sun, Y. Z.; Li, M. J.; Hu, C. Q.; Zhang, M.; Wang, L. A.; Tang, Y.; Chen, Y. M.; Wan, P. Y.; Pan, J. Q. Hierarchical metal-free nitrogen-doped porous graphene/carbon composites as an efficient oxygen reduction reaction catalyst. ACS Appl. Mater. Interfaces 2016, 8, 1415–1423.

    Article  Google Scholar 

  41. Yazdi, A. Z.; Roberts, E. P. L.; Sundararaj, U. Nitrogen/sulfur co-doped helical graphene nanoribbons for efficient oxygen reduction in alkaline and acidic electrolytes. Carbon 2016, 100, 99–108.

    Article  Google Scholar 

  42. Hu, C. G.; Dai, L. M. Multifunctional carbon-based metalfree electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 2017, 29, 1604942.

    Article  Google Scholar 

  43. Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

    Google Scholar 

  44. Czerw, R.; Terrones, M.; Charlier, J. C.; Blase, X.; Foley, B.; Kamalakaran, R.; Grobert, N.; Terrones, H.; Tekleab, D.; Ajayan, P. M. et al. Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 2001, 1, 457–460.

    Article  Google Scholar 

  45. Hou, Z. F.; Wang, X. L.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M.-A. Electronic structure of N-doped graphene with native point defects. Phys. Rev. B 2013, 87, 165401.

    Article  Google Scholar 

  46. Cheng, Y. H.; Tian, Y. Y.; Fan, X. Z.; Liu, J. G.; Yan, C. W. Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reactionin in alkaline media. Electrochim. Acta 2014, 143, 291–296.

    Article  Google Scholar 

  47. Cheng, N. Y.; Liu, Q.; Tian, J. Q.; Xue, Y. R.; Asiri, A. M.; Jiang, H. F.; He, Y. Q.; Sun, X. P. Acidically oxidized carbon cloth: A novel metal-free oxygen evolution electrode with high catalytic activity. Chem. Commun. 2015, 51, 1616–1619.

    Article  Google Scholar 

  48. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Alamry, K. A.; Sun, X. P. Ultrathin graphitic C3N4 nanosheets/graphene composites: Efficient organic electrocatalyst for oxygen evolution reaction. ChemSusChem 2014, 7, 2125–2130.

    Article  Google Scholar 

  49. Qu, K. G.; Zheng, Y.; Dai, S.; Qiao, S. Z. Graphene oxidepolydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 2016, 19, 373–381.

    Article  Google Scholar 

  50. Cheng, Y.; Xu, C. W.; Jia, L. C.; Gale, J. D.; Zhang, L. L.; Liu, C.; Shen, P. K.; Jiang, S. P. Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Appl. Catal. B-Environ. 2015, 163, 96–104.

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by Key Technologies R&D Program of Shaanxi Province (Nos. 2014K10-06 and 2015XT-18), the National Natural Science Foundation of China (Nos. 51373092 and 21543012), the Fundamental Research Funds for the Central Universities (Nos. GK201503038 and GK201501002), Program for Key Science & Technology Innovation Team of Shaanxi Province (No. 2015KCT-13), and the 111 Project (No. B14041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, N., Weng, Q., Shi, Y. et al. N-doped carbon nanocages: Bifunctional electrocatalysts for the oxygen reduction and evolution reactions. Nano Res. 11, 1905–1916 (2018). https://doi.org/10.1007/s12274-017-1808-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1808-8

Keywords

Navigation