Skip to main content
Log in

Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The hydrogenation of nitrobenzene into aniline is one of industrially important reactions, but still remains great challenge due to the lack of highly active, chemo-selective and eco-friendly catalyst. By using extensive density functional theory (DFT) calculations, herein we predict that single Pt atom decorated g-C3N4 (Pt@g-C3N4) exhibits excellent catalytic activity and selectivity for the conversion of nitrobenzene into aniline under visible light. The overall activation energy barrier for the hydrogenation of nitrobenzene on single atom Pt@g-C3N4 catalyst is even lower than that of the bare Pt(111) surface. The dissociation of N–O bonds on single Pt atom is triggered by single hydrogen atom rather than double hydrogen atoms on the Pt(111) surface. Moreover, the Pt@g-C3N4 catalyst exhibits outstanding chemoselectivity towards the common reducible substituents, such as phenyl,–C=C,–C≡C and–CHO groups during the hydrogenation. In addition, the doped single Pt atom can significantly enhance the photoconversion efficiency by broadening the light absorption of the pristine g-C3N4 to visible light region. Our results highlight an interesting and experimentally synthesized single-atom photocatalyst (Pt@g-C3N4) for efficient hydrogenation of nitrobenzene to aniline under a sustainable and green approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539, 76–80.

    Article  Google Scholar 

  2. Zhang, S.; Chang, C. R.; Huang, Z. Q.; Li, J.; Wu, Z. M.; Ma, Y. Y.; Zhang, Z. Y.; Wang, Y.; Qu, Y. Q. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J. Am. Chem. Soc. 2016, 138, 2629–2637.

    Article  Google Scholar 

  3. Beier, M. J.; Andanson, J. M.; Baiker, A. Tuning the chemoselective hydrogenation of nitrostyrenes catalyzed by ionic liquid-supported platinum nanoparticles. ACS Catal. 2012, 2, 2587–2595.

    Article  Google Scholar 

  4. Marquez, J.; Pletcher, D. A study of the electrochemical reduction of nitrobenzene to p-aminophenol. J. Appl. Electrochem. 1980, 10, 567–573.

    Article  Google Scholar 

  5. Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem., Int. Ed. 2007, 46, 7266–7269.

    Article  Google Scholar 

  6. Joshi, R.; Chudasama, U. Hydrogenation and oxidation reactions involving ruthenium supported catalysts. Ind. Eng. Chem. Res. 2010, 49, 2543–2547.

    Article  Google Scholar 

  7. Deshmukh, A. A.; Prashar, A. K.; Kinage, A. K.; Kumar, R.; Meijboom, R. Ru(II) phenanthroline complex as catalyst for chemoselective hydrogenation of nitro-aryls in a green process. Ind. Eng. Chem. Res. 2010, 49, 12180–12184.

    Article  Google Scholar 

  8. Noyori, R. Synthesizing our future. Nat. Chem. 2009, 1, 5–6.

    Article  Google Scholar 

  9. Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

    Article  Google Scholar 

  10. Wienhöfer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011, 133, 12875–12879.

    Article  Google Scholar 

  11. He, D. P.; Shi, H.; Wu, Y.; Xu, B. Q. Synthesis of chloroanilines: Selective hydrogenation of the nitro in chloronitrobenzenes over zirconia-supported gold catalyst. Green Chem. 2007, 9, 849–851.

    Article  Google Scholar 

  12. He, L.; Wang, L. C.; Sun, H.; Ni, J.; Cao, Y.; He, H. Y.; Fan, K. N. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem., Int. Ed. 2009, 48, 9538–9541.

    Article  Google Scholar 

  13. Serna, P.; Concepción, P.; Corma, A. Design of highly active and chemoselective bimetallic gold–platinum hydrogenation catalysts through kinetic and isotopic studies. J. Catal. 2009, 265, 19–25.

    Article  Google Scholar 

  14. Shen, K.; Chen, L.; Long, J. L; Zhong, W.; Li, Y. W. MOFs-templated Co@Pd core–shell nps embedded in N-doped carbon matrix with superior hydrogenation activities. ACS Catal. 2015, 5, 5264–5271.

    Article  Google Scholar 

  15. Ren, Y. J.; Wei, H. S.; Yin, G. Z.; Zhang, L. L.; Wang, A. Q.; Zhang, T. Oxygen surface groups of activated carbon steer the chemoselective hydrogenation of substituted nitroarenes over nickel nanoparticles. Chem. Commun. 2017, 53, 1969–1972.

    Article  Google Scholar 

  16. Liu, L. C.; Gao, F.; Concepción, P.; Corma, A. A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. J. Catal. 2017, 350, 218–225.

    Article  Google Scholar 

  17. Zhang, J. W.; Lu, G. P.; Cai, C. Chemoselective transfer hydrogenation of nitroarenes by highly dispersed Ni-Co BMNPs. Catal. Commun. 2016, 84, 25–29.

    Article  Google Scholar 

  18. Daems, N.; Wouters, J.; Van Goethem, C.; Baert, K.; Poleunis, C.; Delcorte, A.; Hubin, A.; Vankelecom, I. F. J.; Pescarmona, P. P. Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals. Appl. Catal. B: Environ. 2018, 226, 509–522.

    Article  Google Scholar 

  19. Sheng, X.; Wouters, B.; Breugelmans, T.; Hubin, A.; Vankelecom, I. F. J.; Pescarmona, P. P. Cu/CuxO and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene. Appl. Catal. B: Environ. 2014, 147, 330–339.

    Article  Google Scholar 

  20. Nguyen, T. B.; Huang, C. P.; Doong, R. A. Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites. Appl. Catal. B: Environ. 2019, 240, 337–347.

    Article  Google Scholar 

  21. Raja, R.; Golovko, V. B.; Thomas, J. M.; Berenguer-Murcia, A.; Zhou, W. Z.; Xie, S. H.; Johnson, B. F. G. Highly efficient catalysts for the hydrogenation of nitro-substituted aromatics. Chem. Commun. 2005, 2026–2028.

    Google Scholar 

  22. Blaser, H. U.; Steiner, H.; Studer, M. Selective catalytic hydrogenation of functionalized nitroarenes: An update. ChemCatChem 2009, 1, 210–221.

    Article  Google Scholar 

  23. Corma, A.; González-Arellano, C.; Iglesias, M.; Sánchez, F. Gold complexes as catalysts: Chemoselective hydrogenation of nitroarenes. Appl. Catal. A: Gen. 2009, 356, 99–102.

    Article  Google Scholar 

  24. Corma, A.; Serna, P.; Concepción, P.; Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 2008, 130, 8748–8753.

    Article  Google Scholar 

  25. Siegrist, U.; Baumeister, P.; Blaser, H. U.; Studer, M. The selective hydrogenation of functionalized nitroarenes: New catalytic systems. Chem. Ind. 1998, 75, 207–220.

    Google Scholar 

  26. Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

    Article  Google Scholar 

  27. Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

    Article  Google Scholar 

  28. Zhu, H. Y.; Ke, X. B.; Yang, X. Z.; Sarina, S.; Liu, H. W. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chem., Int. Ed. 2010, 49, 9657–9661.

    Article  Google Scholar 

  29. Naya, S. I.; Inoue, A.; Tada, H. Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant. J. Am. Chem. Soc. 2010, 132, 6292–6293.

    Article  Google Scholar 

  30. Li, H.; Qin, F.; Yang, Z. P.; Cui, X. M.; Wang, J. F.; Zhang, L. Z. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on biocl possessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513–3521.

    Article  Google Scholar 

  31. Xiao, Q.; Liu, Z.; Wang, F.; Sarina, S.; Zhu, H. Y. Tuning the reduction power of visible-light photocatalysts of gold nanoparticles for selective reduction of nitroaromatics to azoxy-compounds—Tailoring the catalyst support. Appl. Catal. B: Environ. 2017, 209, 69–79.

    Article  Google Scholar 

  32. Yang, Z. W.; Xu, X. Q.; Liang, X. X.; Lei, C.; Cui, Y. H.; Wu, W. H.; Yang, Y. X.; Zhang, Z.; Lei, Z. Q. Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. Appl. Catal. B: Environ. 2017, 205, 42–54.

    Article  Google Scholar 

  33. Dai, X.; Xie, M. L.; Meng, S. G.; Fu, X. L.; Chen, S. F. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal. B: Environ. 2014, 158-159, 382–390.

    Article  Google Scholar 

  34. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  Google Scholar 

  35. Tew, M. W.; Janousch, M.; Huthwelker, T.; Van Bokhoven, J. A. The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J. Catal. 2011, 283, 45–54.

    Article  Google Scholar 

  36. García-Mota, M.; Bridier, B.; Pérez-Ramírez, J.; López, N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. J. Catal. 2010, 273, 92–102.

    Article  Google Scholar 

  37. Zhao, F. Y.; Ikushima, Y.; Arai, M. Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: Effects of pressure, solvent, and metal particle size. J. Catal. 2004, 224, 479–483.

    Article  Google Scholar 

  38. Mondal, B.; Mukherjee, P. S. Cage encapsulated gold nanoparticles as heterogeneous photocatalyst for facile and selective reduction of nitroarenes to azo compounds. J. Am. Chem. Soc. 2018, 140, 12592–12601.

    Article  Google Scholar 

  39. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  Google Scholar 

  40. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  Google Scholar 

  41. Jia, Y.; Zhang, L. Z.; Gao, G. P.; Chen, H.; Wang, B.; Zhou, J. Z.; Soo, M. T.; Hong, M.; Yan, X. C.; Qian, G. R. et al. A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.

    Article  Google Scholar 

  42. Ling, C. Y.; Shi, L.; Ouyang, Y. X.; Zeng, X. C.; Wang, J. L. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 2017, 17, 5133–5139.

    Article  Google Scholar 

  43. He, T. W.; Zhang, C. M.; Du, A. J. Single-atom supported on graphene grain boundary as an efficient electrocatalyst for hydrogen evolution reaction. Chem. Eng. Sci. 2019, 194, 58–63.

    Article  Google Scholar 

  44. He, T. W.; Matta, S. K.; Will, G.; Du, A. J. Transition-metal single atoms anchored on graphdiyne as high-efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods 2019, in press, https://doi.org/10.1002/smtd.201800419.

    Google Scholar 

  45. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

    Article  Google Scholar 

  46. He, T. W.; Zhang, C. M.; Will, G.; Du, A. J. Cobalt porphyrin supported on graphene/Ni (111) surface: Enhanced oxygen evolution/reduction reaction and the role of electron coupling. Catal. Today 2018, in press, https://doi.org/10.1016/j.cattod.2018.10.056.

    Google Scholar 

  47. Lin, Z. Z. Graphdiyne-supported single-atom Sc and Ti catalysts for highefficient CO oxidation. Carbon 2016, 108, 343–350.

    Article  Google Scholar 

  48. Back, S.; Lim, J.; Kim, N. Y.; Kim, Y. H.; Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 2017, 8, 1090–1096.

    Article  Google Scholar 

  49. Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76–78.

    Article  Google Scholar 

  50. He, T. W.; Matta, S. K.; Du, A. J. Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions. Phys. Chem. Chem. Phys. 2019, 21, 1546–1551.

    Article  Google Scholar 

  51. Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

    Article  Google Scholar 

  52. Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.

    Article  Google Scholar 

  53. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    Article  Google Scholar 

  54. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

    Article  Google Scholar 

  55. Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.

    Article  Google Scholar 

  56. Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

    Article  Google Scholar 

  57. Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564.

    Article  Google Scholar 

  58. Gong, L.; Mu, Y.; Janik, M. J. Mechanistic roles of catalyst surface coating in nitrobenzene selective reduction: A first-principles study. Appl. Catal. B: Environ. 2018, 236, 509–517.

    Article  Google Scholar 

  59. Sheng, T.; Qi, Y. J.; Lin, X.; Hu, P.; Sun, S. G.; Lin, W. F. Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics. Chem. Eng. J. 2016, 293, 337–344.

    Article  Google Scholar 

  60. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  61. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  62. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  63. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  Google Scholar 

  64. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

    Article  Google Scholar 

  65. Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

    Article  Google Scholar 

  66. Boronat, M.; Concepción, P.; Corma, A.; González, S.; Illas, F.; Serna, P. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support. J. Am. Chem. Soc. 2007, 129, 16230–16237.

    Article  Google Scholar 

  67. Saeys, M.; Reyniers, M. F.; Marin, G. B.; Neurock, M. Density functional study of benzene adsorption on Pt (111). J. Phys. Chem. B 2002, 106, 7489–7498.

    Article  Google Scholar 

  68. Saeys, M.; Reyniers, M. F.; Neurock, M.; Marin, G.; Marin G. B. Ab initio reaction path analysis of benzene hydrogenation to cyclohexane on Pt (111). J. Phys. Chem. B 2005, 109, 2064–2073.

    Article  Google Scholar 

  69. He, T. W.; Gao, G. P.; Kou, L. Z.; Will, G.; Du, A. J. Endohedral metallofullerenes (M@C60) as efficient catalysts for highly active hydrogen evolution reaction. J. Catal. 2017, 354, 231–235.

    Article  Google Scholar 

  70. Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

    Article  Google Scholar 

  71. Mahata, A.; Rai, R. K.; Choudhuri, I.; Singh, S. K.; Pathak, B. Direct vs. Indirect pathway for nitrobenzene reduction reaction on a Ni catalyst surface: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 26365–26374.

    Article  Google Scholar 

  72. Millán, R.; Liu, L. C.; Boronat, M.; Corma, A. A new molecular pathway allows the chemoselective reduction of nitroaromatics on non-noble metal catalysts. J. Catal. 2018, 364, 19–30.

    Article  Google Scholar 

  73. Xia, L. X.; Li, D.; Long, J.; Huang, F.; Yang, L. N.; Guo, Y. S.; Jia, Z. M.; Xiao, J. P.; Liu, H. Y. N-doped graphene confined Pt nanoparticles for efficient semi-hydrogenation of phenylacetylene. Carbon 2019, 145, 47–52.

    Article  Google Scholar 

  74. Tafesh, A. M.; Weiguny, J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev. 1996, 96, 2035–2052.

    Article  Google Scholar 

  75. Liao, G. Z.; Chen, S.; Quan, X.; Yu, H. T.; Zhao, H. M. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 2012, 22, 2721–2726.

    Article  Google Scholar 

  76. Liu, S. Z.; Ke, J.; Sun, H. Q.; Liu, J.; Tade, M. O.; Wang, S. B. Size dependence of uniformed carbon spheres in promoting graphitic carbon nitride toward enhanced photocatalysis. Appl. Catal. B: Environ. 2017, 204, 358–364.

    Article  Google Scholar 

  77. Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2012, 135, 18–21.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge generous grants of high-performance computing resources provided by NCI National Facility and The Pawsey Supercomputing Centre through the National Computational Merit Allocation Scheme supported by the Australian Government and the Government of Western Australia. A. D. also greatly appreciates the financial support of the Australian Research Council under Discovery Project (No. DP170103598).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Du.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Zhang, C., Zhang, L. et al. Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline. Nano Res. 12, 1817–1823 (2019). https://doi.org/10.1007/s12274-019-2439-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2439-z

Keywords

Navigation