Skip to main content
Log in

Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Blue emitting perovskite ink obtained from cesium lead halide quantum dots bearing chlorine (CsPbClxBr3−x, 0 < x ≤ 3) suffers from the low photoluminescence quantum yield and poor stability. Cesium lead bromine (CsPbBr3) quantum dots free of chlorine have more stable crystal structure and fewer crystal defects. Precise control of crystal sizes and surface passivation components of CsPbBr3 quantum dots is crucial for the best use of quantum confinement effect and blueshift of emission wavelength to blue region. Here, by polymerizing acrylamide under UV-light irradiation to form polymer gel networks in dimethyl sulfoxide (DMSO) with CsPbBr3 precursors and passivating agents trapped, we successfully prepared novel sustained release tablets with different shapes and sizes. Thanks to the limitation of the polymer networks on solvent releasing, the resulting CsPbBr3 quantum dots have the average size of 1.1 ± 0.2 nm. On the basis of the excellent quantum confinement effect and optimized surface passivation, the obtained PQD ink can emit high quality blue light for more than 6 weeks. This work elucidates a new and convenient technique to prepare blue emission perovskite quantum dots ink with high stability and photoluminescence quantum yield and provides a great potential technology for the preparation of perovskite optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, J. H.; Yang, Z. X.; Ye, B. Q.; Zhao, Z. W.; Ruan, Y. S.; Guo, T. L.; Yu, X. B.; Chen, G. X.; Xu, S. A review of stability-enhanced luminescent materials: Fabrication and optoelectronic applications J. Mater. Chem. C2019, 7, 4934–4955.

    CAS  Google Scholar 

  2. Yang, H. W.; Wang, A.; Zhang, L. M.; Zhou, X. Y.; Yang, G.; Li, Y. J.; Zhang, Y. Z.; Zhang, B.; Song, J.; Feng, Y. Q. Healable terpyridine-based supramolecular gels and the luminescent properties of the rare earth metal complex New J. Chem.2017, 41, 15173–15179.

    CAS  Google Scholar 

  3. Lozano, G. The role of metal halide perovskites in next-generation lighting devices. J Phys. Chem. Lett.2018, 9, 3987–3997.

    CAS  Google Scholar 

  4. Yang, H. W.; Zhang, Y. Z.; Li, Y. J.; Wang, J. X.; Li, X. M.; Song, J.; Zhang, B.; Feng, Y. Q. New member of luminescent materials—Status and future of white light emitting gel Chin. J. Org. Chem.2017, 37, 1991–2001.

    CAS  Google Scholar 

  5. Yang, H. W.; Zhou, Y. Z.; Yang, Y. J.; Yi, D.; Ye, T.; Lam, T. D.; Golberg, D.; Bao, B. T.; Yao, J. N.; Wang, X. Crystal facet engineering induced anisotropic transport of charge carriers in a perovskite J. Mater. Chem. C2018, 6, 11707–11713.

    CAS  Google Scholar 

  6. Zhang, Y.; Gao, P.; Oveisi, E.; Lee, Y.; Jeangros, Q.; Grancini, G.; Paek, S.; Feng, Y. Q.; Nazeeruddin, M. K. PbI2-HMPA complex pretreatment for highly reproducible and efficient CH3NH3PbI3 perovskite solar cells J. Am. Chem. Soc.2016, 138, 14380–14387.

    CAS  Google Scholar 

  7. Zhang, Y.; Zhang, Z. F.; Yan, W.; Zhang, B.; Feng, Y. Q.; Asiri, A. M.; Nazeeruddin, M. K.; Gao, P. Hexagonal mesoporous silica islands to enhance photovoltaic performance of planar junction perovskite solar cells. J Mater. Chem. A2017, 5, 1415–1420.

    CAS  Google Scholar 

  8. Zhao, B. Y.; Jin, S. F.; Huang, S.; Liu, N.; Ma, J. Y.; Xue, D. J.; Han, Q. W.; Ding, J.; Ge, Q. Q.; Feng, Y. Q. et al. Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics. J. Am Chem. Soc.2018, 140, 11716–11725.

    CAS  Google Scholar 

  9. Zhou, Q.; Liang, L. S.; Hu, J. J.; Cao, B. B.; Yang, L. K.; Wu, T. J.; Li, X.; Zhang, B.; Gao, P. High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer Adv. Energy Mater.2019, 9, 1802595.

    Google Scholar 

  10. Huang, S.; Huang, P.; Wang, L.; Han, J. B.; Chen, Y.; Zhong, H. Z. Halogenated-methylammonium based 3D halide perovskites Adv. Mater.2019, 31, 1903830.

    CAS  Google Scholar 

  11. Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite Nat. Nanotechnol.2014, 9, 687–692.

    CAS  Google Scholar 

  12. Lin, K. B.; Xing, J.; Quan, L. N.; De Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent Nature2018, 562, 245–248.

    CAS  Google Scholar 

  13. Xu, W. D.; Hu, Q.; Bai, S.; Bao, C. X.; Miao, Y. F.; Yuan, Z. C.; Borzda, T.; Barker, A. J.; Tyukalova, E.; Hu, Z. J. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes Nat. Photonics2019, 13, 418–424.

    CAS  Google Scholar 

  14. Shen, Y.; Cheng, L. P.; Li, Y. Q.; Li, W.; Chen, J. D.; Lee, S. T.; Tang, J. X. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement Adv. Mater.2019, 31, 1901517.

    Google Scholar 

  15. Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals Science2017, 358, 745–750.

    CAS  Google Scholar 

  16. Wei, Y.; Cheng, Z. Y; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs Chem. Soc. Rev.2019, 48, 310–350.

    CAS  Google Scholar 

  17. Wu, Y.; Li, X. M.; Zeng, H. B. Highly luminescent and stable halide perovskite nanocrystals ACS Energy Lett.2019, 4, 673–681.

    CAS  Google Scholar 

  18. Wu, Z. H.; Wei, J.; Sun, Y. N.; Wu, J.; Hou, Y. F.; Wang, P.; Wang, N. P.; Zhao, Z. F. Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs J. Mater. Sci.2019, 54, 6917–6929.

    Google Scholar 

  19. Liu, H. W.; Liu, Z. Y.; Xu, W. Z.; Yang, L. T.; Liu, Y.; Yao, D.; Zhang, D. Q.; Zhang, H.; Yang, B. Engineering the photoluminescence of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals across the full visible spectra with the interval of 1 nm ACS Appl. Mater. Interfaces2019, 11, 14256–14265.

    CAS  Google Scholar 

  20. Gong, Z. L.; Zheng, W.; Gao, Y.; Huang, P.; Tu, D. T.; Li, R. F.; Wei, J. J.; Zhang, W.; Zhang, Y. Q.; Chen, X. Y. Full-spectrum persistent luminescence tuning using all-inorganic perovskite quantum dots Angew. Chem., Int. Ed.2019, 58, 6943–6947.

    CAS  Google Scholar 

  21. Bi, C. H.; Wang, S. X.; Li, Q.; Kershaw, S. V.; Tian, J. J.; Rogach, A. L. Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J Phys. Chem. Lett.2019, 10, 943–952.

    CAS  Google Scholar 

  22. Li, X. M.; Zhang, K.; Li, J. H.; Chen, J.; Wu, Y.; Liu, K.; Song, J. Z.; Zeng, H. B. Heterogeneous nucleation toward polar-solvent-free, fast, and one-pot synthesis of highly uniform perovskite quantum dots for wider color gamut display. Adv Mater. Interfaces.2018, 5, 1800010.

    Google Scholar 

  23. Pan, J.; Shang, Y. Q.; Yin, J.; Bastiani, M. D.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am Chem. Soc.2018, 140, 562–565.

    CAS  Google Scholar 

  24. Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment.J. Am Chem. Soc.2017, 139, 6566–6569.

    CAS  Google Scholar 

  25. Yang, D. D.; Li, X. M.; Zhou, W. H.; Zhang, S. L.; Meng, C. F.; Wu, Y.; Wang, Y.; Zeng, H. B. CsPbBr3 quantum dots 2.0: Benzenesulfonic acid equivalent ligand awakens complete purification Adv. Mater.2019, 31, 1900767.

    Google Scholar 

  26. Jiang, Y. Z.; Qin, C. C.; Cui, M. H.; He, T. W.; Liu, K. K.; Huang, Y. M.; Luo, M. H.; Zhang, L.; Xu, H. Y.; Li, S. S. et al. Spectra stable blue perovskite light-emitting diodes Nat. Commun.2019, 10, 1868.

    Google Scholar 

  27. Zou, S. H.; Liu, C. P.; Li, R. F.; Jiang, F. L.; Chen, X. Y.; Liu, Y. S.; Hong, M. S. From nonluminescent to blue-emitting Cs4PbBr6 nanocrystals: Tailoring the insulator bandgap of 0D perovskite through Sn cation doping Adv. Mater.2019, 31, 1900606.

    Google Scholar 

  28. Zhang, X. T.; Wang, H.; Hu, Y.; Pei, Y. X.; Wang, S. X.; Shi, Z. F.; Colvin, V. L.; Wang, S. N.; Zhang, Y.; Yu, W. W. Strong blue emission from Sb3+-doped super small CsPbBr3 nanocrystals J. Phys. Chem. Lett.2019, 10, 1750–1756.

    CAS  Google Scholar 

  29. Lu, W. G.; Chen, C.; Han, D. B.; Yao, L. H.; Han, J. B.; Zhong, H. Z.; Wang, Y. T. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: A comparison study using Z-scan technique Adv. Opt. Mater.2016, 4, 1732–1737.

    CAS  Google Scholar 

  30. Zhang, F.; Xiao, C. T.; Li, Y. F.; Zhang, X.; Tang, J. L.; Chang, S.; Pei, Q. B.; Zhong, H. Z. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy Front. Chem.2018, 6, 444.

    CAS  Google Scholar 

  31. Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media Chem. Lett.2012, 41, 397–399.

    CAS  Google Scholar 

  32. Malgras, V.; Henzie, J.; Takei, T.; Yamauchi, Y. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films Angew. Chem., Int. Ed.2018, 130, 9019–9023.

    Google Scholar 

  33. Deng, W.; Fang, H.; Jin, X. C.; Zhang, X. J.; Zhang, X. J.; Jie, J. S. Organic-inorganic hybrid perovskite quantum dots for light-emitting diodes. J Mater. Chem. C2018, 6, 4831–4841.

    CAS  Google Scholar 

  34. Lee, K. H.; Lee, J. H.; Kang, H. D.; Park, B.; Kwon, Y.; Ko, H.; Lee, C.; Lee, J.; Yang, H. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots ACS Nano2014, 8, 4893–4901.

    CAS  Google Scholar 

  35. Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications Small2017, 13, 1603996.

    Google Scholar 

  36. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct. Mater.2016, 26, 2435–2445.

    CAS  Google Scholar 

  37. Hu, G. M.; Qin, W. J.; Liu, M. M.; Ren, X. X.; Wu, X. M.; Yang, L. Y.; Yin, S. G. Scalable room-temperature synthesis of plum-pudding-like Cs4PbBr6/CsPbBr3 microcrystals exhibiting excellent photoluminescence J. Mater. Chem. C2019, 7, 4733–4739.

    CAS  Google Scholar 

  38. Dai, S. W.; Hsu, B. W.; Chen, C. Y.; Lee, C. A.; Liu, H. Y.; Wang, H. F.; Huang, Y. C.; Wu, T. L.; Manikandan, A.; Ho, R. M. et al. Perovskite quantum dots with near unity solution and neat-film photoluminescent quantum yield by novel spray synthesis Adv. Mater.2018, 30, 1705532.

    Google Scholar 

  39. Li, B.; Ding, Z. J.; Li, Z. Q.; Li, H. R. Simultaneous enhancement of mechanical strength and luminescence performance in double-network supramolecular hydrogels J. Mater. Chem. C2018, 6, 6869–6874.

    CAS  Google Scholar 

  40. Takahashi, R.; Shimano, K.; Okazaki, H.; Kurokawa, T.; Nakajima, T.; Nonoyama, T.; King, D. R.; Gong, J. P. Tough particle-based double network hydrogels for functional solid surface coatings Adv. Mater. Interfaces2018, 5, 1801018.

    Google Scholar 

  41. Zhang, Y. Z.; Yang, H. W.; Guan, S.; Liu, Z. H.; Guo, L. Y.; Xie, J. W.; Zhang, J. B.; Zhang, N. N.; Song, J.; Zhang, B. et al. Gelation properties of terpyridine gluconic acid derivatives and their reversible stimuli-responsive white light emitting solution Dyes Pigm.2018, 157, 64–71.

    CAS  Google Scholar 

  42. Song, Z. Y.; Li, L. C.; Zhu, D. Z.; Miao, L.; Duan, H.; Wang, Z. W.; Xiong, W.; Lv, Y. K.; Liu, M. X.; Gan, L. H. Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solidstate supercapacitors with an ultrahigh energy density J. Mater. Chem. A2019, 7, 816–826.

    CAS  Google Scholar 

  43. Liu, B.; Liu, W. G. Poly(vinyl diaminotriazine): From molecular recognition to high-strength hydrogels Macromol. Rapid Commun.2018, 39, 1800190.

    Google Scholar 

  44. Ghaffar, T.; Parkins, A. W. The catalytic hydration of nitriles to amides using a homogeneous platinum phosphinito catalyst J Mol Catal A: Chem.2000, 160, 249–261.

    CAS  Google Scholar 

  45. Wu, L. Z.; Zhong, Q. X.; Yang, D.; Chen, M.; Hu, H. C.; Pan, Q.; Liu, H. Y.; Cao, M. H.; Xu, Y.; Sun, B. Q. et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand Langmuir2017, 33, 12689–12696.

    CAS  Google Scholar 

  46. Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng Chem. Res.2003, 42, 2427–2433.

    CAS  Google Scholar 

  47. Kosugi, T.; Iso, Y.; Isobe, T. Effects of oleic acid on the stability of perovskite CsPbBr3 quantum dot dispersions Chem. Lett.2019, 48, 349–352.

    CAS  Google Scholar 

  48. Bronstein, L. M.; Huang, X. L.; Retrum, J.; Schmucker, A.; Pink, M.; Stein, B. D.; Dragnea, B. Influence of iron oleate complex structure on iron oxide nanoparticle formation Chem. Mater.2007, 19, 3624–3632.

    CAS  Google Scholar 

  49. Chen, H. T.; Guo, A. Q.; Zhu, J.; Cheng, L. W.; Wang, Q. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for their physical research Appl. Surf. Sci.2019, 465, 656–664.

    CAS  Google Scholar 

  50. Brennan, M. C.; Herr, J. E.; Nguyen-Beck, T. S.; Zinna, J.; Draguta, S.; Rouvimov, S.; Parkhill, J.; Kuno, M. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals J. Am. Chem. Soc.2017, 139, 12201–12208.

    CAS  Google Scholar 

  51. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut Nano Lett.2015, 15, 3692–3696.

    CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (No. 21761132007) and the National Key R&D Program of China (No. 2016YFE0114900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Feng, Y., Tu, Z. et al. Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets. Nano Res. 12, 3129–3134 (2019). https://doi.org/10.1007/s12274-019-2566-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2566-6

KeyWords

Navigation