Skip to main content
Log in

In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Faster response benefits the high-performance of magnetic material in various live applications. Hence, enhancing response speed toward the applied field via engineering advantages in structures is highly desired. In this paper, the precise synthesis of Co nanochain with the tunable length-diameter ratio is realized via a magnetic-field-guided assembly approach. The Co nanochain exhibits enhanced microwave absorption performance (near to -60 dB, layer thickness 2.2 mm) and broader effective absorption bandwidth (over 2/3 of total S, C, X, Ku bands). Furthermore, the simulated dynamic magnetic response reveals that the domain motion in 1D chain is faster than that in 0D nanoparticle, which is the determining factor of magnetic loss upgrade. Meanwhile, based on the controllable magnetic field experiment via in situ transmission electron microscopy, the association between magnetic response and microstructure is first present at the nanometer-level. The real and imaginary parts of relative complex permeability are determined by the domain migration confined inside Co nanochain and the magnetic flux field surrounded outside Co nanochain, respectively. Importantly, these findings can be extended to the novel design of microwave absorbers and promising candidates of magnetic carriers based on 1D structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wan, L.; Song, H. Y.; Chen, X.; Zhang, Y.; Yue, Q.; Pan, P. P.; Su, J. C.; Elzatahry, A. A.; Deng, Y. H. A magnetic-field guided interface coassembly approach to magnetic mesoporous silica nanochains for osteoclast-targeted inhibition and heterogeneous nanocatalysis. Adv. Mater.2018, 30, 1707515.

    Google Scholar 

  2. Kralj, S.; Makovec, D. Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano2015, 9, 9700–9707.

    CAS  Google Scholar 

  3. Majetich, S. A.; Wen, T.; Booth, R. A. Functional magnetic nanoparticle assemblies: Formation, collective behavior, and future directions. ACS Nano2011, 5, 6081–6084.

    CAS  Google Scholar 

  4. Kumar, C. S. S. R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug. Deliv. Rev.2011, 63, 789–808.

    CAS  Google Scholar 

  5. Yang, Y.; Guo, L.; Lopez, G. P.; Yellen, B. B. Tunable assembly of colloidal crystal alloys using magnetic nanoparticle fluids. ACS Nano2013, 7, 2705–2716.

    CAS  Google Scholar 

  6. Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev.2014, 114, 6949–6985.

    CAS  Google Scholar 

  7. Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed.2007, 46, 1222–1244.

    CAS  Google Scholar 

  8. Liu, J.; Cao, M. S.; Luo, Q.; Shi, H. L.; Wang, W. Z.; Yuan, J. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces2016, 8, 22615–22622.

    CAS  Google Scholar 

  9. Shen, J. Y.; Yao, Y. T.; Liu, Y. J.; Leng, J. S. Tunable hierarchical Fe nanowires with a facile template-free approach for enhanced microwave absorption performance. J. Mater. Chem. C2016, 4, 7614–7621.

    CAS  Google Scholar 

  10. Zeng, Q.; Xiong, X. H.; Chen, P.; Yu, Q.; Wang, Q.; Wang, R. C.; Chu, H. R. Air@rGO€Fe3O4 microspheres with spongy shells: Self-assembly and microwave absorption performance. J. Mater. Chem. C2016, 4, 10518–10528.

    CAS  Google Scholar 

  11. Liu, Q. H.; Xu, X. H.; Xia, W. X.; Che, R. C.; Chen, C.; Cao, Q.; He, J. G. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale2015, 7, 1736–1743.

    CAS  Google Scholar 

  12. Abula, X.; Sadeh, B.; Aman, M.; Wubulikasimu, A.; Liu, J. Solvothermal synthesis and characterization of flower-like Co magnetic powder. Chin. J. Inorg. Chem.2012, 28, 1403–1408.

    CAS  Google Scholar 

  13. Chen, H. Y.; Xu, C. J.; Chen, C.; Zhao, G. Z.; Liu, Y. Q. Flower-like hierarchical nickel microstructures: Facile synthesis, growth mechanism, and their magnetic properties. Mater. Res. Bull.2012, 47, 1839–1844.

    CAS  Google Scholar 

  14. Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res.2016, 9, 2018–2025.

    CAS  Google Scholar 

  15. Tong, G. X.; Liu, Y.; Cui, T. T.; Li, Y. N.; Zhao, Y. T.; Guan, J. G. Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings. Appl. Phys. Lett.2016, 108, 072905.

    Google Scholar 

  16. Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small2009, 5, 1600–1630.

    CAS  Google Scholar 

  17. Dušak, P.; Mertelj, A.; Kralj, S.; Makovec, D. Controlled heteroaggregation of two types of nanoparticles in an aqueous suspension. J. Colloid Interface Sci.2015, 438, 235–243.

    Google Scholar 

  18. Lin, Y.; Xu, L.; Jiang, Z. Y.; Li, H. L.; Xie, Z. X.; Zheng, L. S. Facile synthesis of (Ni,Co)@(Ni,Co)xFe3−xO4 core@shell chain structures and (Ni,Co)@(Ni,Co)xFe3−xO4/graphene composites with enhanced microwave absorption. RSC Adv.2015, 5, 70849–70855.

    CAS  Google Scholar 

  19. Liang, C. Y.; Liu, C. Y.; Wang, H.; Wu, L. N.; Jiang, Z. H.; Xu, Y. J.; Shen, B. Z.; Wang, Z. J. SiC-Fe3O4 dielectric-magnetic hybrid nanowires: Controllable fabrication, characterization and electromagnetic wave absorption. J. Mater. Chem. A2014, 2, 16397–16402.

    CAS  Google Scholar 

  20. Yu, X. Z.; DeGrave, J. P.; Hara, Y.; Hara, T.; Jin, S.; Tokura, Y. Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. Nano Lett.2013, 13, 3755–3759.

    CAS  Google Scholar 

  21. Hu, J. M.; Yang, T. N.; Momeni, K.; Cheng, X. X.; Chen, L.; Lei, S. M.; Zhang, S. J.; Trolier-McKinstry, S.; Gopalan, V.; Carman, G. P. et al. Fast magnetic domain-wall motion in a ring-shaped nanowire driven by a voltage. Nano Lett.2016, 16, 2341–2348.

    CAS  Google Scholar 

  22. Lu, M. M.; Cao, M. S.; Chen, Y. H.; Cao, W. Q.; Liu, J.; Shi, H. L.; Zhang, D. Q.; Wang, W. Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces2015, 7, 19408–19415.

    CAS  Google Scholar 

  23. Jian, X.; Wu, B.; Wei, Y. F.; Dou, S. X.; Wang, X. L.; He, W. D.; Mahmood, N. Facile Synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces2016, 8, 6101–6109.

    CAS  Google Scholar 

  24. Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res.2017, 10, 1595–1607.

    CAS  Google Scholar 

  25. Balci, O.; Polat, E. O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nature Commun.2015, 6, 6628.

    CAS  Google Scholar 

  26. Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon2010, 48, 788–796.

    CAS  Google Scholar 

  27. Li, Q.; Zhang, Z.; Qi, L. P.; Liao, Q. L.; Kang, Z.; Zhang, Y. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci.2019, 6, 1801057.

    Google Scholar 

  28. Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable highperformance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater.2015, 27, 2049–2053.

    CAS  Google Scholar 

  29. She, W.; Bi, H.; Wen, Z. W.; Liu, Q. H.; Zhao, X. B.; Zhang, J.; Che, R. C. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@a-MnO2 microspindles studied by electron holography. ACS Appl. Mater. Interfaces2016, 8, 9782–9789.

    CAS  Google Scholar 

  30. Meng, F. B.; Wang, H. G.; Wei; Chen, Z. J.; Li, T.; Li, C. Y.; Xuan, Y.; Zhou, Z. W. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res.2018, 11, 2847–2861.

    CAS  Google Scholar 

  31. Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater.2004, 16, 401–405.

    CAS  Google Scholar 

  32. Li, X.; Wang, L.; You, W. B.; Xing, L. S.; Yu, X. F.; Li, Y. S.; Che, R. C. Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale2019, 11, 2694–2702.

    CAS  Google Scholar 

  33. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater.2014, 26, 8120–8125.

    CAS  Google Scholar 

  34. Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res.2018, 11, 1426–1436.

    CAS  Google Scholar 

  35. Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces2012, 4, 6949–6956.

    CAS  Google Scholar 

  36. Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A Voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater.2018, 30, 1706343.

    Google Scholar 

  37. Quan, B.; Liang, X. H.; Ji, G. B.; Zhang, Y. N.; Xu, G. Y.; Du, Y. W. Cross-linking-derived synthesis of porous CoxNiy/C nanocomposites for excellent electromagnetic behaviors. ACS Appl. Mater. Interfaces2017, 9, 38814–38823.

    CAS  Google Scholar 

  38. Zhou, Y.; Sun, S. N.; Song, J. J.; Xi, S. B.; Chen, B.; Du, Y. H.; Fisher, A. C.; Cheng, F. Y.; Wang, X.; Zhang, H. et al. Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater.2018, 30, 1802912.

    Google Scholar 

  39. Ding, Y.; Zhang, Z.; Luo, B. H.; Liao, Q. L.; Liu, S.; Liu, Y. C.; Zhang, Y. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res.2017, 10, 980–990.

    CAS  Google Scholar 

  40. Liang, J. J.; Huang, Y.; Oh, J.; Kozlov, M.; Sui, D.; Fang, S. L.; Baughman, R. H.; Ma, Y. F.; Chen, Y. S. Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv. Funct. Mater.2011, 21, 3778–3784.

    CAS  Google Scholar 

  41. Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater.2014, 26, 3484–3489.

    CAS  Google Scholar 

  42. Li, J.; Xie, Y.; Lu, W.; Chou, T.-W. Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films. Carbon2018, 129, 76–84.

    CAS  Google Scholar 

  43. Wei, Z.; Chen, W. M.; Nai, J. W.; Yin, P. G.; Chen, C.; Guo, L. Selective synthesis of peapodlike Ni/Ni3S2 nanochains and nickel sulfide hollow chains and their magnetic properties. Adv. Funct. Mater.2010, 20, 3678–3683.

    Google Scholar 

  44. Sun, J. C.; He, Z. D.; Dong, W. J.; Wu, W. H.; Tong, G. X. Broadband and strong microwave absorption of Fe/Fe3C/C core-shell spherical chains enhanced by dual dielectric relaxation and dual magnetic resonances. J. Alloys Compd.2019, 782, 193–202.

    CAS  Google Scholar 

  45. Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater.2018, 28, 1803938.

    Google Scholar 

  46. Micheli, D.; Apollo, C.; Pastore, R.; Marchetti, M. X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos. Sci. Technol.2010, 70, 400–409.

    CAS  Google Scholar 

  47. Hu, S.; Pei, K.; Wang, B. M.; Xia, W. X.; Yang, H. L.; Zhan, Q. F.; Li, X. G.; Liu, X. C.; Li, R. W. Direct imaging of cross-sectional magnetization reversal in an exchange-biased CoFeB/IrMn bilayer. Phys. Rev. B2018, 97, 054422.

    Google Scholar 

  48. You, W. B.; Bi, H.; She, W.; Zhang, Y.; Che, R. C. Dipolar-distribution cavity γ-Fe2O3@C@a-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small2017, 13, 1602779.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (973 Project) (No. 2018YFA0209102) and the National Natural Science Foundation of China (Nos. 11727807, 51725101, 51672050, and 61790581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renchao Che.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, W., Pei, K., Yang, L. et al. In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber. Nano Res. 13, 72–78 (2020). https://doi.org/10.1007/s12274-019-2574-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2574-6

Keywords

Navigation