Skip to main content
Log in

Enhanced linear magneto-resistance near the Dirac point in topological insulator Bi2(Te1−xSex)3 nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the composition and back-gate voltage tuned transport properties of ternary compound Bi2(Te1−xSex)3 nanowires synthesized by chemical vapor deposition (CVD). It is found that the population of bulk carriers can be suppressed effectively with increasing the Se concentration x. In Bi2(Te1−xSex)3 nanowires with x = 25% ± 5%, the ambipolar surface conduction associated with tuning the Fermi energy across the Dirac point of topological surface states is induced by applying a back-gate voltage. Importantly, we find that while the magneto-resistance (MR) follows the weak antilocalization (WAL) behavior when the Fermi level is tuned away from the Dirac point, MR is enhanced in magnitude and turns more linear in the whole magnetic field range (between ±9 T) near the Dirac point. The observation of the enhanced linear magneto-resistance (LMR) and crossover from WAL to LMR, near the Dirac point provides a deeper insight into understanding the nature of topological insulator’s surface transport and the relation between these two widely observed magneto-transport phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science1998, 279, 208–211.

    Article  CAS  Google Scholar 

  2. Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res.1999, 32, 435–445.

    Article  CAS  Google Scholar 

  3. Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature2002, 420, 57–61.

    Article  CAS  Google Scholar 

  4. Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science2001, 291, 851–853.

    Article  CAS  Google Scholar 

  5. Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater.2007, 6, 841–850.

    Article  CAS  Google Scholar 

  6. Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature2003, 421, 241–245.

    Article  CAS  Google Scholar 

  7. Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today2006, 9, 18–27.

    Article  CAS  Google Scholar 

  8. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature2007, 449, 885–889.

    Article  CAS  Google Scholar 

  9. Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science2001, 293, 1289–1292.

    Article  CAS  Google Scholar 

  10. Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol.2005, 23, 1294–1301.

    Article  CAS  Google Scholar 

  11. Patolsky, F.; Lieber, C. M. Nanowire nanosensors. Mater. Today2005, 8, 20–28.

    Article  CAS  Google Scholar 

  12. Tian, B. Z.; Lieber, C. M. Nanowired bioelectric interfaces. Chem. Rev.2019, 119, 9136–9152.

    Article  CAS  Google Scholar 

  13. Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater.2019, 18, 510–517.

    Article  CAS  Google Scholar 

  14. Hong, G. S.; Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci.2019, 20, 330–345.

    Article  CAS  Google Scholar 

  15. Patel, S. R.; Lieber, C. M. Precision electronic medicine in the brain. Nat. Biotechnol.2019, 37, 1007–1012.

    Article  CAS  Google Scholar 

  16. Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett.2010, 10, 547–552.

    Article  CAS  Google Scholar 

  17. Du, J.; Liang, D.; Tang, H.; Gao, X. P. A. InAs nanowire transistors as gas sensor and the response mechanism. Nano Lett.2009, 9, 4348–4351.

    Article  CAS  Google Scholar 

  18. Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys.2010, 82, 3045–3067.

    Article  CAS  Google Scholar 

  19. Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys.2011, 83, 1057–1110.

    Article  CAS  Google Scholar 

  20. Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature2009, 460, 1101–1105.

    Article  CAS  Google Scholar 

  21. Moore, J. E. The birth of topological insulators. Nature2010, 464, 194–198.

    Article  CAS  Google Scholar 

  22. Roushan, P.; Seo, J.; Parker, C. V.; Hor, Y. S.; Hsieh, D.; Qian, D.; Richardella, A.; Hasan, M. Z.; Cava, R. J.; Yazdani, A. Topological surface states protected from backscattering by chiral spin texture. Nature2009, 460, 1106–1109.

    Article  CAS  Google Scholar 

  23. Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys.2009, 5, 398–402.

    Article  CAS  Google Scholar 

  24. Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys.2009, 5, 438–442.

    Article  CAS  Google Scholar 

  25. Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature2008, 452, 970–974.

    Article  CAS  Google Scholar 

  26. Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science2009, 325, 178–181.

    Article  CAS  Google Scholar 

  27. Chen, Y. L.; Chu, J. H.; Analytis, J. G.; Liu, Z. K.; Igarashi, K.; Kuo, H. H.; Qi, X. L.; Mo, S. K.; Moore, R. G.; Lu, D. H. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science2010, 329, 659–662.

    Article  CAS  Google Scholar 

  28. Zhang, T.; Cheng, P.; Chen, X.; Jia, J. F.; Ma, X. C.; He, K.; Wang, L. L.; Zhang, H. J.; Dai, X.; Fang, Z. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett.2009, 103, 266803.

    Article  CAS  Google Scholar 

  29. Alpichshev, Z.; Analytis, J. G.; Chu, J. H.; Fisher, I. R.; Chen, Y. L.; Shen, Z. X.; Fang, A.; Kapitulnik, A. STM imaging of electronic waves on the surface of Bi2Te3: Topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett.2010, 104, 016401.

    Article  CAS  Google Scholar 

  30. Seo, J.; Roushan, P.; Beidenkopf, H.; Hor, Y. S.; Cava, R. J.; Yazdani, A. Transmission of topological surface states through surface barriers. Nature2010, 466, 343–346.

    Article  CAS  Google Scholar 

  31. Hanaguri, T.; Igarashi, K.; Kawamura, M.; Takagi, H.; Sasagawa, T. Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3. Phys. Rev. B2010, 82, 081305(R).

    Article  CAS  Google Scholar 

  32. Checkelsky, J. G.; Hor, Y. S.; Cava, R. J.; Ong, N. P. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys. Rev. Lett.2011, 106, 196801.

    Article  CAS  Google Scholar 

  33. Kong, D. S.; Chen, Y. L.; Cha, J. J.; Zhang, Q. F.; Analytis, J. G.; Lai, K. J.; Liu, Z. K.; Hong, S. S.; Koski, K. J.; Mo, S. K. et al. Ambipolar field effect in the ternary topological insulator (BixSb1−x)2Te3 by composition tuning. Nat. Nanotechnol.2011, 6, 705–709.

    Article  CAS  Google Scholar 

  34. Hong, S. S.; Cha, J. J.; Kong, D. S.; Cui, Y. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons. Nat. Commun.2012, 3, 757.

    Article  CAS  Google Scholar 

  35. Lee, C. H.; He, R.; Wang, Z. H.; Qiu, R. L. J.; Kumar, A.; Delaney, C.; Beck, B.; Kidd, T. E.; Chancey, C. C.; Sankaran, R. M. et al. Metal-insulator transition in variably doped (Bi1−xSbx)2Se3 nanosheets. Nanoscale2013, 5, 4337–4343.

    Article  CAS  Google Scholar 

  36. Analytis, J. G.; McDonald, R. D.; Riggs, S. C.; Chu, J. H.; Boebinger, G. S.; Fisher, I. R. Two-dimensional surface state in the quantum limit of a topological insulator. Nat. Phys.2010, 6, 960–964.

    Article  CAS  Google Scholar 

  37. Qu, D. X.; Hor, Y. S.; Xiong, J.; Cava, R. J.; Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science2010, 329, 821–824.

    Article  CAS  Google Scholar 

  38. Taskin, A. A.; Ren, Z.; Sasaki, S.; Segawa, K.; Ando, Y. Observation of dirac holes and electrons in a topological insulator. Phys. Rev. Lett.2011, 107, 016801.

    Article  CAS  Google Scholar 

  39. Xiong, J.; Khoo, Y.; Jia, S.; Cava, R. J.; Ong, N. P. Tuning the quantum oscillations of surface Dirac electrons in the topological insulator Bi2Te2Se by liquid gating. Phys. Rev. B2013, 88, 035128.

    Article  CAS  Google Scholar 

  40. Pan, Y.; Nikitin, A. M.; Wu, D.; Huang, Y. K.; Puri, A.; Wiedmann, S.; Zeitler, U.; Frantzeskakis, E.; van Heumen, E.; Golden, M. S. et al. Quantum oscillations of the topological surface states in low carrier concentration crystals of Bi2−xSbxTe3−ySey. Solid State Commun.2016, 227, 13–18.

    Article  CAS  Google Scholar 

  41. Akiyama, R.; Sumida, K.; Ichinokura, S.; Nakanishi, R.; Kimura, A.; Kokh, K. A.; Tereshchenko, O. E.; Hasegawa, S. Shubnikov-de Haas oscillations in p and n-type topological insulator (BixSb1−x)2Te3. J. Phys.: Condens. Matter2018, 30, 265001.

    Google Scholar 

  42. Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys. Rev. Lett.2012, 109, 066803.

    Article  CAS  Google Scholar 

  43. Lang, M. R.; He, L.; Xiu, F. X.; Yu, X. X.; Tang, J. S.; Wang, Y.; Kou, X. F.; Jiang, W. J.; Fedorov, A. V.; Wang, K. L. Revelation of topological surface states in Bi2Se3 thin films by in situ Al passivation. ACS Nano2012, 6, 295–302.

    Article  CAS  Google Scholar 

  44. Xiu, F. X.; He, L.; Wang, Y.; Cheng, L. N.; Chang, L. T.; Lang, M. R.; Huang, G.; Kou, X. F.; Zhou, Y.; Jiang, X. W. et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol.2011, 6, 216–221.

    Article  CAS  Google Scholar 

  45. Wang, Y.; Xiu, F. X.; Cheng, L. N.; He, L.; Lang, M. R.; Tang, J. S.; Kou, X. F.; Yu, X. X.; Jiang, X. W.; Chen, Z. G. et al. Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. Nano Lett.2012, 12, 1170–1175.

    Article  CAS  Google Scholar 

  46. Liu, H. C.; Liu, S. G.; Yi, Y.; He, H. T.; Wang, J. N. Shubnikov-de Haas oscillations in n and p type Bi2Se3 flakes. 2D Mater.2015, 2, 045002.

    Article  CAS  Google Scholar 

  47. Huang, Y. C.; Lee, P. C.; Chien, C. H.; Chiu, F. Y.; Chen, Y. Y.; Harutyunyan, S. R. Magnetotransport properties of Sb2Te3 nanoflake. Phys. B: Condens. Matter2014, 452, 108–112.

    Article  CAS  Google Scholar 

  48. Chen, J.; Qin, H. J.; Yang, F.; Liu, J.; Guan, T.; Qu, F. M.; Zhang, G. H.; Shi, J. R.; Xie, X. C.; Yang, C. L. et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys. Rev. Lett.2010, 105, 176602.

    Article  CAS  Google Scholar 

  49. He, H. T.; Wang, G.; Zhang, T.; Sou, I. K.; Wong, G. K. L.; Wang, J. N. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett.2011, 106, 166805.

    Article  CAS  Google Scholar 

  50. Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator. Phys. Rev. B2017, 95, 195113.

    Article  Google Scholar 

  51. Cha, J. J.; Kong, D. S.; Hong, S. S.; Analytis, J. G.; Lai, K. J.; Cui, Y. Weak antilocalization in Bi2(SexTe1−x)3 nanoribbons and nanoplates. Nano Lett.2012, 12, 1107–1111.

    Article  CAS  Google Scholar 

  52. Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z. D.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1−xSex)3 nanoribbons. ACS Nano2013, 7, 2126–2131.

    Article  CAS  Google Scholar 

  53. Li, H.; Wang, H. W.; Li, Y.; Zhang, H. C.; Zhang, S.; Pan, X. C.; Jia, B.; Song, F. Q.; Wang, J. N. Quantitative analysis of weak antilocalization effect of topological surface states in topological insulator BiSbTeSe2. Nano Lett.2019, 19, 2450–2455.

    Article  CAS  Google Scholar 

  54. Tu, N. H.; Tanabe, Y.; Satake, Y.; Huynh, K. K.; Le, P. H.; Matsushita, S. Y.; Tanigaki, K. Large-area and transferred high-quality three-dimensional topological insulator Bi2−xSbxTe3−ySey ultrathin film by catalyst-free physical vapor deposition. Nano Lett.2017, 17, 2354–2360.

    Article  CAS  Google Scholar 

  55. Bao, L. H.; He, L.; Meyer, N.; Kou, X. F.; Zhang, P.; Chen, Z. G.; Fedorov, A. V.; Zou, J.; Riedemann, T. M.; Lograsso, T. A. et al. Weak anti-localization and quantum oscillations of surface states in topological insulator Bi2Se2Te. Sci. Rep.2012, 2, 726.

    Article  CAS  Google Scholar 

  56. Liu, Y. J.; Tang, M.; Meng, M. M.; Wang, M. Z.; Wu, J. X.; Yin, J. B.; Zhou, Y. B.; Guo, Y. F.; Tan, C. W.; Dang, W. H. et al. Epitaxial growth of ternary topological insulator Bi2Te2Se 2D crystals on mica. Small2017, 13, 1603572.

    Article  CAS  Google Scholar 

  57. Tang, H.; Liang, D.; Qiu, R. L. J.; Gao, X. P. A. Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano2011, 5, 7510–7516.

    Article  CAS  Google Scholar 

  58. Gao, B. F.; Gehring, P.; Burghard, M.; Kern, K. Gate-controlled linear magnetoresistance in thin Bi2Se3 sheets. Appl. Phys. Lett.2012, 100, 212402.

    Article  CAS  Google Scholar 

  59. Wang, X. L.; Du, Y.; Dou, S. X.; Zhang, C. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys. Rev. Lett.2012, 108, 266806.

    Article  CAS  Google Scholar 

  60. He, H. T.; Li, B. K.; Liu, H. C.; Guo, X.; Wang, Z. Y.; Xie, M. H.; Wang, J. N. High-field linear magneto-resistance in topological insulator Bi2Se3 thin films. Appl. Phys. Lett.2012, 100, 032105.

    Article  CAS  Google Scholar 

  61. Zhang, S. X.; McDonald, R. D.; Shekhter, A.; Bi, Z. X.; Li, Y.; Jia, Q. X.; Picraux, S. T. Magneto-resistance up to 60 Tesla in topological insulator Bi2Te3 thin films. Appl. Phys. Lett.2012, 101, 202403.

    Article  CAS  Google Scholar 

  62. Yue, Z. J.; Wang, X. L.; Dou, S. X. Angular-dependences of giant in-plane and interlayer magnetoresistances in Bi2Te3 bulk single crystals. Appl. Phys. Lett.2012, 101, 152107.

    Article  CAS  Google Scholar 

  63. Yue, Z. J.; Wang, X. L.; Du, Y.; Mahboobeh, S. M.; Yun, F. F.; Cheng, Z. X.; Dou, S. X. Giant and anisotropic magnetoresistances in p-type Bi-doped Sb2Te3 bulk single crystals. Europhys. Lett.2012, 100, 17014.

    Article  CAS  Google Scholar 

  64. Wang, Z. H.; Yang, L.; Li, X. J.; Zhao, X. T.; Wang, H. L.; Zhang, Z. D.; Gao, X. P. A. Granularity controlled nonsaturating linear magnetoresistance in topological insulator Bi2Te3 films. Nano Lett.2014, 14, 6510–6514.

    Article  CAS  Google Scholar 

  65. Wang, Z. H.; Yang, L.; Zhao, X. T.; Zhang, Z. D.; Gao, X. P. A. Linear magnetoresistance versus weak antilocalization effects in Bi2Te3. Nano Res.2015, 8, 2963–2969.

    Article  CAS  Google Scholar 

  66. Huang, S. M.; Yu, S. H.; Chou, M. The linear magnetoresistance from surface state of the Sb2SeTe2 topological insulator. J. Appl. Phys.2016, 119, 245110.

    Article  CAS  Google Scholar 

  67. Wei, F.; Liu, C. W.; Li, D.; Wang, C. Y.; Zhang, H. R.; Sun, J. R.; Gao, X. P. A.; Ma, S.; Zhang, Z. D. Broken mirror symmetry tuned topological transport in PbTe/SnTe heterostructures. Phys. Rev. B2018, 98, 161301(R).

    Article  CAS  Google Scholar 

  68. Li, M. Z.; Wang, Z. H.; Yang, L.; Gao, X. P. A.; Zhang, Z. D. From linear magnetoresistance to parabolic magnetoresistance in Cu and Cr-doped topological insulator Bi2Se3 films. J. Phys. Chem. Solids2019, 128, 331–336.

    Article  CAS  Google Scholar 

  69. Amaladass, E. P.; Devidas, T. R.; Sharma, S.; Sundar, C. S.; Mani, A.; Bharathi, A. Magneto-transport behaviour of Bi2Se3−xTex: Role of disorder. J. Phy.: Condens. Matter2016, 28, 075003.

    CAS  Google Scholar 

  70. Hikami, S.; Larkin, A. I.; Nagaoka, Y. Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys.1980, 63, 707–710.

    Article  Google Scholar 

  71. Steinberg, H.; Laloë, J. B.; Fatemi, V.; Moodera, J. S.; Jarillo-Herrero, P. Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys. Rev. B2011, 84, 233101.

    Article  CAS  Google Scholar 

  72. Tian, J. F.; Chang, C. Z.; Cao, H. L.; He, K.; Ma, X. C.; Xue, Q. K.; Chen, Y. P. Quantum and classical magnetoresistance in ambipolar topological insulator transistors with gate-tunable bulk and surface conduction. Sci. Rep.2014, 4, 4859.

    Article  CAS  Google Scholar 

  73. Abrikosov, A. A. Quantum linear magnetoresistance. Europhys. Lett.2000, 49, 789–793.

    Article  CAS  Google Scholar 

  74. Parish, M. M.; Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature2003, 426, 162–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51971220) and the National Basic Research Program of China (No. 2017YFA0206302). X. P. A. G. thanks the National Science Foundation for its financial support under Award DMR-1607631.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhenHua Wang or Xuan P. A. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Wang, Z., Zhang, Z. et al. Enhanced linear magneto-resistance near the Dirac point in topological insulator Bi2(Te1−xSex)3 nanowires. Nano Res. 13, 1332–1338 (2020). https://doi.org/10.1007/s12274-019-2577-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2577-3

Keywords

Navigation