Skip to main content
Log in

PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As nanomedicine-based clinical strategies have continued to develop, the possibility of combining chemotherapy and singlet oxygen-dependent photodynamic therapy (PDT) to treat pancreatic cancer (PaC) has emerged as a viable therapeutic modality. The efficacy of such an approach, however, is likely to be constrained by the mechanisms of drug release and tumor oxygen levels. In the present study, we developed an Fe(III)-complexed porous coordination network (PCN) which we then used to encapsulate PTX (PCN-Fe(III)-PTX) nanoparticles (NPs) in order to treat PaC via a combination of chemotherapy and PDT. The resultant NPs were able to release drug in response to both laser irradiation and pH changes to promote drug accumulation within tumors. Furthermore, through a Fe(III)-based Fenton-like reaction these NPs were able to convert H2O2 in the tumor site to O2, thereby regulating local hypoxic conditions and enhancing the efficacy of PDT approaches. Also these NPs were suitable for use as a T1-MRI weighted contrast agent, making them viable for monitoring therapeutic efficacy upon treatment. Our results in both cell line and animal models of PaC suggest that these NPs represent an ideal agent for mediating effective MRI-guided chemotherapy-PDT, giving them great promise for the clinical treatment of PaC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.2016, 68, 394–424.

    Article  Google Scholar 

  2. Kamisawa, T.; Wood, L. D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet2016, 388, 73–85.

    Article  CAS  Google Scholar 

  3. Witkowski, E. R.; Smith, J. K.; Tseng, J. F. Outcomes following resection of pancreatic cancer. J. Surg. Oncol.2013, 107, 97–103.

    Article  Google Scholar 

  4. Von Hoff, D. D.; Ervin, T.; Arena, F. P.; Chiorean, E. G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S. A.; Ma, W. W.; Saleh, M. N. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med.2013, 369, 1691–1703.

    Article  CAS  Google Scholar 

  5. Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer2001, 37, 1590–1598.

    Article  CAS  Google Scholar 

  6. Zhang, F. W.; Zhang, S. Y.; Pollack, S. F.; Li, R. C.; Gonzalez, A. M.; Fan, J. W.; Zou, J.; Leininger, S. E.; Pavía-Sanders, A.; Johnson, R. et al. Improving paclitaxel delivery: In vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers. J. Am. Chem. Soc.2015, 137, 2056–2066.

    Article  CAS  Google Scholar 

  7. Feng, Q. H.; Zhang, W. X.; Yang, X. M.; Li, Y. Z.; Hao, Y. W.; Zhang, H. L.; Hou, L.; Zhang, Z. Z. pH/ultrasound dual-responsive gas generator for ultrasound imaging-guided therapeutic inertial cavitation and sonodynamic therapy. Adv. Healthc. Mater.2018, 7, 1700957.

    Article  Google Scholar 

  8. Chen, W. H.; Luo, G. F.; Vázquez-González, M.; Cazelles, R.; Sohn, Y. S.; Nechushtai, R.; Mandel, Y.; Willner, I. Glucose-responsive metal-organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano2018, 12, 7538–7545.

    Article  CAS  Google Scholar 

  9. Bansal, A.; Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc. Chem. Res.2014, 47, 3052–3060.

    Article  CAS  Google Scholar 

  10. Lee, H.; Han, J.; Shin, H.; Han, H.; Na, K.; Kim, H. Combination of chemotherapy and photodynamic therapy for cancer treatment with sonoporation effects. J. Control. Release2018, 283, 190–199.

    Article  CAS  Google Scholar 

  11. Jiang, Z. Q.; Wang, Y. J.; Sun, L.; Yuan, B.; Tian, Y. C.; Xiang, L. C.; Li, Y. Y.; Li, Y.; Li, J.; Wu, A. G. Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile postmodification improves therapeutic outcomes of triple negative breast cancer in vivo. Biomaterials2019, 197, 41–50.

    Article  CAS  Google Scholar 

  12. Jiang, Z. Q.; Yuan, B.; Qiu, N. X.; Wang, Y. J.; Sun, L.; Wei, Z. N.; Li, Y. Y.; Zheng, J. J.; Jin, Y. H.; Li, Y. et al. Manganese-zeolitic imidazolate frameworks-90 with high blood circulation stability for MRI-guided tumor therapy. Nano-Micro Lett.2019, 11, 61.

    Article  Google Scholar 

  13. Spring, B. Q.; Rizvi, I.; Xu, N.; Hasan, T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci.2015, 14, 1476–1491.

    Article  CAS  Google Scholar 

  14. Zhao, Y. Y.; Wei, C. F.; Chen, X.; Liu, J. W.; Yu, Q. Q.; Liu, Y. N.; Liu, J. Drug delivery system based on near-infrared light-responsive molybdenum disulfide nanosheets controls the high-efficiency release of dexamethasone to inhibit inflammation and treat osteoarthritis. ACS Appl. Mater. Interfaces2019, 11, 11587–11601.

    Article  CAS  Google Scholar 

  15. Bown, S. G.; Rogowska, A. Z.; Whitelaw, D. E.; Lees, W. R.; Lovat, L. B.; Ripley, P.; Jones, L.; Wyld, P.; Gillams, A.; Hatfield, A. W. R. Photodynamic therapy for cancer of the pancreas. Gut2002, 50, 549–557.

    Article  CAS  Google Scholar 

  16. Hu, D. H.; Chen, Z. W.; Sheng, Z. H.; Gao, D. Y.; Yan, F.; Ma, T.; Zheng, H. R.; Hong, M. A catalase-loaded hierarchical zeolite as an implantable nanocapsule for ultrasound-guided oxygen self-sufficient photodynamic therapy against pancreatic cancer. Nanoscale2018, 10, 17283–17292.

    Article  CAS  Google Scholar 

  17. Xu, R. Y.; Wang, Y. F.; Duan, X. P.; Lu, K. D.; Micheroni, D.; Hu, A. G.; Lin, W. B. Nanoscale metal-organic frameworks for ratiometric oxygen sensing in live cells. J. Am. Chem. Soc.2016, 138, 2158–2161.

    Article  CAS  Google Scholar 

  18. Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun.2017, 8, 902.

    Article  Google Scholar 

  19. Bristow, R. G.; Hill, R. P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer2008, 8, 180–192.

    Article  CAS  Google Scholar 

  20. Wang, D. D.; Wu, H. H.; Lim, W. Q.; Phua, S. Z. F.; Xu, P. P.; Chen, Q. W.; Guo, Z.; Zhao, Y. L. A mesoporous nanoenzyme derived from metal-organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy. Adv. Mater.2019, 31, 1901893.

    Article  Google Scholar 

  21. Tang, J. Q.; Zhou, H. G.; Hou, X. Y.; Wang, L. M.; Li, Y. X.; Pang, Y. Y.; Chen, C. Y.; Jiang, G.; Liu, Y. Q. Enhanced anti-tumor efficacy of temozolomide-loaded carboxylated poly(amido-amine) combined with photothermal/photodynamic therapy for melanoma treatment. Cancer Lett.2018, 423, 16–26.

    Article  CAS  Google Scholar 

  22. You, Q.; Sun, Q.; Wang, J. P.; Tan, X. X.; Pang, X. J.; Liu, L.; Yu, M.; Tan, F. P.; Li, N. A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2. Nanoscale2017, 9, 3784–3796.

    Article  CAS  Google Scholar 

  23. Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun.2015, 6, 8785.

    Article  CAS  Google Scholar 

  24. Liu, L. H.; Zhang, Y. H.; Qiu, W. X.; Zhang, L.; Gao, F.; Li, B.; Xu, L.; Fan, J. X.; Li, Z. H.; Zhang, X. Z. Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small2017, 13, 1701621.

    Article  Google Scholar 

  25. McEwan, C.; Owen, J.; Stride, E.; Fowley, C.; Nesbitt, H.; Cochrane, D.; Coussios, C. C.; Borden, M.; Nomikou, N.; McHale, A. P. et al. Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. J. Control. Release2015, 203, 51–56.

    Article  CAS  Google Scholar 

  26. Halliwell, B.; Clement, M. V.; Long, L. H. Hydrogen peroxide in the human body. FEBS Lett.2000, 486, 10–13.

    Article  CAS  Google Scholar 

  27. Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C. J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem.2004, 266, 37–56.

    Article  CAS  Google Scholar 

  28. Ma, Z. F.; Zhang, M. C.; Jia, X. D.; Bai, J.; Ruan, Y. D.; Wang, C.; Sun, X. P.; Jiang, X. E. FeIII-doped two-dimensional C3N4 nanofusiform: A new O2-evolving and mitochondria-targeting photodynamic agent for MRI and enhanced antitumor therapy. Small2016, 12, 5477–5487.

    Article  CAS  Google Scholar 

  29. Zheng, D. W.; Li, B.; Li, C. X.; Fan, J. X.; Lei, Q.; Li, C.; Xu, Z. S.; Zhang, X. Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano2016, 10, 8715–8722.

    Article  CAS  Google Scholar 

  30. Pinto, S. M. A.; Calvete, M. J. F.; Ghica, M. E.; Soler, S.; Gallardo, I.; Pallier, A.; Laranjo, M. B.; Cardoso, A. M. S.; Castro, M. M. C. A.; Brett, C. M. A. et al. A biocompatible redox MRI probe based on a Mn(II)/Mn(III) porphyrin. Dalton Trans.2019, 48, 3249–3262.

    Article  CAS  Google Scholar 

  31. Shen, Z. Y.; Song, J. B.; Yung, B. C.; Zhou, Z. J.; Wu, A. G.; Chen, X. Y. Emerging strategies of cancer therapy based on ferroptosis. Adv. Mater.2018, 30, 1704007.

    Article  Google Scholar 

  32. Lan, G. X.; Ni, K. Y.; Xu, Z. W.; Veroneau, S. S.; Song, Y.; Lin, W. B. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc.2018, 140, 5670–5673.

    Article  CAS  Google Scholar 

  33. Wang, Y. J.; Wang, C.; Gong, C. Y.; Wang, Y. J.; Guo, G.; Luo, F.; Qian, Z. Y. Polysorbate 80 coated poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone) micelles for paclitaxel delivery. Int. J. Pharm.2012, 434, 1–8.

    Article  CAS  Google Scholar 

  34. Garvie, L. A. J.; Buseck, P. R. Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature1998, 396, 667–670.

    Article  CAS  Google Scholar 

  35. Liu, C.; Luo, L. J.; Zeng, L. Y.; Xing, J.; Xia, Y. Z.; Sun, S.; Zhang, L. Y.; Yu, Z.; Yao, J. L.; Yu, Z. S. et al. Porous gold nanoshells on functional NH2-MOFs: Facile synthesis and designable platforms for cancer multiple therapy. Small2018, 14, 1801851.

    Article  Google Scholar 

  36. Sukhorukov, G. B.; Antipov, A. A.; Voigt, A.; Donath, E.; Möhwald, H. pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules. Macromol. Rapid Commun.2001, 22, 44–46.

    Article  CAS  Google Scholar 

  37. Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc.2016, 138, 3518–3525.

    Article  CAS  Google Scholar 

  38. Fan, L.; Zhao, S. S.; Jin, X.; Zhang, Y. S.; Song, C. J.; Wu, H. Synergistic chemo-photodynamic therapy by “big & small combo nanoparticles” sequential release system. Nanomed.: Nanotechnol., Biol. Med.2018, 14, 109–121.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81527803, 81420108018, U1432114, 81550110258, 8161101589, 81650410654 and 31971292), National Key R&D Program of China (Nos. 2018YFC0115900 and 2018YFC0910601), Key Breakthrough Program of Chinese Academy of Sciences (No. KGZD-EW-T06), Zhejiang Science and Technology Project (No. 2019C03077), the Hundred Talents Program of Chinese Academy of Sciences (No. 2010-735), Youth Natural Science Fund Project of Zhejiang Province (No. LQ19H180004), Natural Science Fund Project of Ningbo City (No. 2018A610380), and Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province (No. 2019E10020). We acknowledge Ruifen Zou for help in animal experiments, and Ting Xue for help of Material characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhi Ren, Aiguo Wu or Pintong Huang.

Ethics declarations

The authors declare no competing financial interest.

Electronic Supplementary Material

12274_2019_2610_MOESM1_ESM.pdf

PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Jiang, Z., Chen, L. et al. PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. Nano Res. 13, 273–281 (2020). https://doi.org/10.1007/s12274-019-2610-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2610-6

Keywords

Navigation