Skip to main content
Log in

Hierarchical coupling effect in hollow Ni/NiFe2O4-CNTs microsphere via spray-drying for enhanced oxygen evolution electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Design and fabrication of cost-effective transition metal and their oxides-based nanocomposites are of paramount significance for metal-air batteries and water-splitting. However, the traditional optimized designs for nanostructure are complicated, low-efficient and underperform for wide-scale applications. Herein, a novel hierarchical framework of hollow Ni/NiFe2O4-CNTs composite microsphere forcibly-assembled by zero-dimensional (0D) Ni/NiFe2O4 nanoparticle (< 16 nm) and one-dimensional (1D) self-supporting CNTs was fabricated successfully. Benefitted from the unique nanostructure, such monohybrids can achieve remarkable oxygen evolution reaction (OER) performance in alkaline media with a low overpotential and superior durability, which exceeds most of the commercial catalysts based on IrO2/RuO2 or other non-noble metal nanomaterials. The enhanced OER performance of Ni/NiFe2O4-CNTs composite is mainly ascribed to the increased catalytic activity and the optimized conductivity induced by the effects of strong hierarchical coupling and charge transfers between CNTs and Ni/NiFe2O4 nanoparticles. These effects are greatly boosted by the polarized heterojunction interfaces confirmed by electron holography. The density functional theory (DFT) calculation indicates the epitaxial Ni further enriches the intrinsic electrons contents of NiFe2O4 and thus accelerates absorption/desorption kinetics of OER intermediates. This work hereby paves a facile route to construct the hollow composite microsphere with excellent OER electrocatalytic activity based on non-noble metal oxide/CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Wang, X. L.; Lu, X. H.; Xia, X. H.; Tu, J. P. Hollow TiO2@Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. (Weinh)2018, 5, 1700772.

    Google Scholar 

  2. Cheng, G. H.; Kou, T. T.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H. O22−/O functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy2017, 38, 155–166.

    CAS  Google Scholar 

  3. Tang, C.; Wang, B.; Wang, H. F.; Zhang, Q. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv. Mater.2017, 29, 1703185.

    Google Scholar 

  4. Si, C. H.; Zhang, Y. L.; Zhang, C. Q.; Gao, H.; Ma, W. S.; Lv, L. F.; Zhang, Z. H. Mesoporous nanostructured spinel-type MFe2O4 (M = Co, Mn, Ni) oxides as efficient bi-functional electrocatalysts towards oxygen reduction and oxygen evolution. Electrochim. Acta2017, 245, 829–838.

    CAS  Google Scholar 

  5. Li, P. S.; Duan, X. X.; Kuang, Y.; Li, Y. P.; Zhang, G. X.; Liu, W.; Sun, X. M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater.2018, 8, 1703341.

    Google Scholar 

  6. Wang, Z.; Ang, J. M.; Zhang, B. W.; Zhang, Y. F.; Ma, X. Y. D.; Yan, T.; Liu, J.; Che, B. Y.; Huang, Y. Z.; Lu, X. H. FeCo/FeCoNi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc-air battery. Appl. Catal. B: Environ.2019, 254, 26–36.

    CAS  Google Scholar 

  7. Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci.2019, 72, 322–333.

    Google Scholar 

  8. Finke, C. E.; Omelchenko, S. T.; Jasper, J. T.; Lichterman, M. F.; Read, C. G.; Lewis, N. S.; Hoffmann, M. R. Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO2. Energy Environ. Sci, 2019, 72, 358–365.

    Google Scholar 

  9. Zhen, D. X.; Zhao, B. T.; Shin, H. C.; Bu, Y. F.; Ding, Y.; He, G. H.; Liu, M. L. Electrospun porous perovskite La0.6Sr0.4Co1−xFexO3−δ nanofibers for efficient oxygen evolution reaction. Adv. Mater. Interfaces2017, 4, 1700146.

    Google Scholar 

  10. Niu, S. Q.; Sun, Y. C.; Sun, G. J.; Rakov, D.; Li, Y. Z.; Ma, Y.; Chu, J. Y.; Xu, P. Stepwise electrochemical construction of FeOOH/Ni(OH)2 on Ni foam for enhanced electrocatalytic oxygen evolution. ACS Appl. Energy Mater.2019, 2, 3927–3935.

    CAS  Google Scholar 

  11. Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc.2015, 137, 2688–2694.

    CAS  Google Scholar 

  12. Mahala, C.; Sharma, M. D.; Basu, M. 2D nanostructures of CoFe2O4 and NiFe2O4: Efficient oxygen evolution catalyst. Electrochim. Acta2018, 273, 462–473.

    CAS  Google Scholar 

  13. Li, T. F.; Lv, Y. J.; Su, J. H.; Wang, Y.; Yang, Q.; Zhang, Y. W.; Zhou, J. C.; Xu, L.; Sun, D. M.; Tang, Y. W. Anchoring CoFe2O4 nanoparticles on N-doped carbon nanofibers for high-performance oxygen evolution reaction. Adv. Sci. (Weinh)2017, 4, 1700226.

    Google Scholar 

  14. Yu, L.; Yang, J. F.; Guan, B. Y.; Lu, Y.; Lou, X. W. Hierarchical hollow nanoprisms based on ultrathin Ni-Fe Layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution. Angew. Chem., Int. Ed.2018, 57, 172–176.

    CAS  Google Scholar 

  15. Zhou, D. J.; Cai, Z.; Lei, X. D.; Tian, W. L.; Bi, Y. M.; Jia, Y.; Han, N. N.; Gao, T. F.; Zhang, Q.; Kuang, Y. et al. NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater.2018, 8, 1701905.

    Google Scholar 

  16. Zhao, S. L.; Li, M.; Han, M.; Xu, D. D.; Yang, J.; Lin, Y.; Shi, N. E.; Lu, Y. N.; Yang, R.; Liu, B. T. et al. Defect-rich Ni3FeN nanocrystals anchored on N-doped graphene for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater.2018, 28, 1706018

    Google Scholar 

  17. Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; Goodenough, J. B. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater.2017, 7, 1601172.

    Google Scholar 

  18. Wang, W. H.; Yang, Y.; Huan, D. M.; Wang, L. K.; Shi, N.; Xie, Y.; Xia, C. R.; Peng, R. R.; Lu, Y. L. An excellent oer electrocatalyst of cubic SrCoO3−δ prepared by a simple F-doping strategy. J. Mater. Chem. A2019, 7, 12538–12546.

    CAS  Google Scholar 

  19. Yue, X.; Jin, Y. S.; Shen, P. K. Highly stable and efficient non-precious metal electrocatalysts of tantalum dioxyfluoride used for the oxygen evolution reaction. J. Mater. Chem. A2017, 5, 8287–8291.

    CAS  Google Scholar 

  20. Li, M.; Lu, M. J.; Yang, J. R.; Xiao, J.; Han, L. N.; Zhang, Y. J.; Bo, X. J. Facile design of ultrafine CuFe2O4 nanocrystallines coupled porous carbon nanowires: Highly effective electrocatalysts for hydrogen peroxide reduction and the oxygen evolution reaction. J. Alloys Compd.2019, 809, 151766.

    CAS  Google Scholar 

  21. Han, M. N.; Shi, M. J.; Wang, J.; Zhang, M. L.; Yan, C.; Jiang, J. T.; Guo, S. H.; Sun, Z. Y.; Guo, Z. H. Efficient bifunctional Co/N dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction. Carbon2019, 153, 575–584.

    CAS  Google Scholar 

  22. Wang, X.; Huang, X. K.; Gao, W. B.; Tang, Y.; Jiang, P. B.; Lan, K.; Yang, R. Z.; Wang, B.; Li, R. Metal-organic framework derived CoTe2 encapsulated in nitrogen-doped carbon nanotube frameworks: A high-efficiency bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A2018, 6, 3684–3691.

    CAS  Google Scholar 

  23. Suryawanshi, U. P.; Suryawanshi, M. P.; Ghorpade, U. V.; Shin, S. W.; Kim, J.; Kim, J. H. An earth-abundant, amorphous cobalt-iron-borate (Co-Fe-Bi) prepared on Ni foam as highly efficient and durable electrocatalysts for oxygen evolution. Appl. Surf. Sci.2019, 495, 143462.

    CAS  Google Scholar 

  24. Liu, G.; Wang, K. F.; Gao, X. S.; He, D. Y.; Li, J. P. Fabrication of mesoporous NiFe2O4 nanorods as efficient oxygen evolution catalyst for water splitting. Electrochim. Acta2016, 211, 871–878.

    CAS  Google Scholar 

  25. He, K.; Tadesse Tsega, T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem., Int. Ed.2019, 58, 11903–11909.

    CAS  Google Scholar 

  26. Panda, C.; Menezes, P. W.; Yao, S. L.; Schmidt, J.; Walter, C.; Hausmann, J. N.; Driess, M. Boosting electrocatalytic hydrogen evolution activity with a NiPt3@NiS heteronanostructure evolved from a molecular nickel-platinum precursor. J. Am. Chem. Soc.2019, 141, 13306–13310.

    CAS  Google Scholar 

  27. Xiong, Y.; Xu, L. L.; Jin, C. D.; Sun, Q. F. Interface-engineered atomically thin Ni3S2/MnO2 heterogeneous nanoarrays for efficient overall water splitting in alkaline media. Appl. Catal. B: Environ.2019, 254, 329–338.

    CAS  Google Scholar 

  28. Guo, H. L.; Feng, Q. C.; Zhu, J. X.; Xu, J. S.; Li, Q. Q.; Liu, S. L.; Xu, K. W.; Zhang, C.; Liu, T. X. Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal-organic framework for tri-functional ORR, OER and HER electrocatalysis. J. Mater. Chem. A2019, 7, 3664–3672.

    CAS  Google Scholar 

  29. Dong, C. Q.; Kou, T. Y.; Gao, H.; Peng, Z. Q.; Zhang, Z. H. Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting. Adv. Energy Mater.2018, 8, 1701347.

    Google Scholar 

  30. Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater.2019, 31, 1900510.

    Google Scholar 

  31. Andersen, N. I.; Serov, A.; Atanassov, P. Metal oxides/CNT nanocomposite catalysts for oxygen reduction/oxygen evolution in alkaline media. Appl. Catal. B: Environ.2015, 163, 623–627.

    CAS  Google Scholar 

  32. Li, Y. M.; He, H. Y.; Fu, W.; Mu, C. Z.; Tang, X. Z.; Liu, Z.; Chi, D. Z.; Hu, X. In-grown structure of NiFe mixed metal oxides and CNT hybrid catalysts for oxygen evolution reaction. Chem. Commun. (Camb)2016, 52, 1439–1442.

    CAS  Google Scholar 

  33. Zhang, X.; Zhang, X.; Wang, X. G.; Xie, Z. J.; Zhou, Z. NiFe2O4-CNT composite: An efficient electrocatalyst for oxygen evolution reactions in Li-O2 batteries guided by computations. J. Mater. Chem. A2016, 4, 9390–9393.

    CAS  Google Scholar 

  34. Elizabeth, I.; Nair, A. K.; Singh, B. P.; Gopukumar, S. Multifunctional Ni-NiO-CNT composite as high performing free standing anode for Li ion batteries and advanced electro catalyst for oxygen evolution reaction. Electrochim. Acta2017, 230, 98–105.

    CAS  Google Scholar 

  35. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater.2016, 28, 486–90.

    CAS  Google Scholar 

  36. Jiao, W. L.; Chen, C.; You, W. B.; Zhang, J.; Liu, J. W.; Che, R. C. Yolk-shell Fe/Fe4N@Pd/C magnetic nanocomposite as an efficient recyclable ORR electrocatalyst and SERS substrate. Small2019, 15, 1805032.

    Google Scholar 

  37. Li, D. J.; Kang, J.; Lee, H. J.; Choi, D. S.; Koo, S. H.; Han, B.; Kim, S. O. High activity hydrogen evolution catalysis by uniquely designed amorphous/metal interface of core-shell phosphosulfide/N-doped CNTs. Adv. Energy Mater.2018, 8, 1702806.

    Google Scholar 

  38. Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed.2016, 55, 2650–2676.

    CAS  Google Scholar 

  39. Li, Y. F.; Selloni, A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal.2014, 4, 1148–1153.

    CAS  Google Scholar 

  40. Hong, D. C.; Yamada, Y.; Nagatomi, T.; Takai, Y.; Fukuzumi, S. Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O82−. J. Am. Chem. Soc.2012, 134, 19572–19575.

    CAS  Google Scholar 

  41. Kumar, P. V.; Short, M. P.; Yip, S.; Yildiz, B.; Grossman, J. C. High surface reactivity and water adsorption on NiFe2O4 (111) surfaces. J. Phys. Chem. C2013, 117, 5678–5683.

    CAS  Google Scholar 

  42. Huang, X. P.; Pan, C. X.; Huang, X. T. Preparation and characterization of γ-MnO2/CNTs nanocomposite. Mater. Lett.2007, 61, 934–936.

    CAS  Google Scholar 

  43. Yu, X. F.; Wang, L.; Liu, J. W.; Xue, S. Y.; Yang, L. T.; Li, X.; Zhang, J.; Xing, L. S.; Chen, G. Y.; Wang, M. et al. Ferromagnetic Co20Ni80 nanoparticles encapsulated inside reduced graphene oxide layers with superior microwave absorption performance. J. Mater. Chem. C2019, 7, 2943–2953.

    CAS  Google Scholar 

  44. Ye, F.; Song, Q.; Zhang, Z. C.; Li, W.; Zhang, S. Y.; Yin, X. W.; Zhou, Y. Z.; Tao, H. W.; Liu, Y. S.; Cheng, L. F. et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater.2018, 28, 1707205.

    Google Scholar 

  45. Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater.2018, 28, 1803329.

    Google Scholar 

  46. Wang, C.; Han X. J.; Zhang, X. L.; Hu, S. R.; Zhang, T.; Wang, J. Y.; Du, Y. C.; Wang, X. H.; Xu, P. Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies. J. Phys. Chem. C2010, 114, 14826–14830.

    CAS  Google Scholar 

  47. Wu, T.; Liu, Y.; Zeng, X.; Cui, T. T.; Zhao, Y. T.; Li, Y. N.; Tong, G. X. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces2016, 8, 7370–7380.

    CAS  Google Scholar 

  48. Chen, H.; Yan, J. Q.; Wu, H.; Zhang, Y. X.; Liu, S. Z. One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation. J. Power Sources2016, 324, 499–508.

    CAS  Google Scholar 

  49. Ma, Y. D.; Dai, X. P.; Liu, M. Z.; Yong, J. X.; Qiao, H. Y.; Jin, A. X.; Li, Z. Z.; Huang, X. L.; Wang, H.; Zhang, X. Strongly coupled FeNi alloys/NiFe2O4@carbonitride layers-assembled microboxes for enhanced oxygen evolution reaction. ACS Appl. Mater. Interfaces2016, 8, 34396–34404.

    CAS  Google Scholar 

  50. Li, M.; Xiong, Y. P.; Liu, X. T.; Bo, X. J.; Zhang, Y. F.; Han, C.; Guo, L. P. Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale2015, 7, 8920–8930.

    CAS  Google Scholar 

  51. Zhao, Y.; Xu, L.; Yan, J.; Yan, W.; Wu, C. C.; Lian, J. B.; Huang, Y. P.; Bao, J.; Qiu, J. X.; Xu, L. et al. Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor. J. Alloys Compd.2017, 726, 608–617.

    CAS  Google Scholar 

  52. Feng, S. J.; Yang, W.; Wang, Z. B. Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion. Mater. Sci. Eng.: B2011, 176, 1509–1512.

    CAS  Google Scholar 

  53. Chen, L. Y.; Dai, H.; Shen, Y. M; Bai, J. F. Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gelassistant hydrothermal route. J. Alloys Compd.2010, 491, L33–L38.

    CAS  Google Scholar 

  54. Xu, K.; Ding, H.; Jia, K. C.; Lu, X. L.; Chen, P. Z.; Zhou, T. P.; Cheng, H.; Liu, S.; Wu, C. Z.; Xie, Y. Solution-liquid-solid synthesis of hexagonal nickel selenide nanowire arrays with a nonmetal catalyst. Angew. Chem., Int. Ed.2016, 55, 1710–1713.

    CAS  Google Scholar 

  55. Prieto, P.; Nistor, V.; Nouneh, K.; Oyama, M.; Abd-Lefdil, M.; Díaz, R. XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci.2012, 258, 8807–8813.

    CAS  Google Scholar 

  56. Nesbitt, H. W.; Legrand, D.; Bancroft, G.M. Interpretation of Ni2P XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner.2000, 27, 357–366.

    CAS  Google Scholar 

  57. Wang, X. Y.; Zhang, W. Z. Z.; Zhang, J. L.; Wu, Z. C. Fe-doped Ni3S2 nanowires with surface-restricted oxidation toward high-current-density overall water splitting. ChemElectroChem2019, 6, 4550–4559.

    CAS  Google Scholar 

  58. Wu, Z. C.; Wang, X.; Huang, J. S.; Gao, F. A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A2018, 6, 167–178.

    CAS  Google Scholar 

  59. Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res.2015, 8, 3815–3822.

    CAS  Google Scholar 

  60. Mutz, B.; Sprenger, P.; Wang, W.; Wang, D.; Kleist, W.; Grunwaldt, J. D. Operando Raman spectroscopy on CO2 methanation over alumina-supported Ni, Ni3Fe and NiRh0.1 catalysts: Role of carbon formation as possible deactivation pathway. Appl. Catal. A: Gen.2018, 556, 160–171.

    CAS  Google Scholar 

  61. Li, Y. L.; Zhang, Z. Q.; Pei, L. Y.; Li, X. G.; Fan, T.; Ji, J.; Shen, J. F.; Ye, M. X. Multifunctional photocatalytic performances of recyclable Pd-NiFe2O4/reduced graphene oxide nanocomposites via different co-catalyst strategy. Appl. Catal. B: Environ.2016, 190, 1–11.

    CAS  Google Scholar 

  62. Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Uniformly mesoporous NiO/NiFe2O4 biphasic nanorods as efficient oxygen evolving catalyst for water splitting. Int. J. Hydrogen Energy2016, 41, 17976–17986.

    CAS  Google Scholar 

  63. Wang, X. M.; Zhang, H.; Yang, Z.; Zhang, C.; Liu, S. X. Ultrasound-treated metal-organic framework with efficient electrocatalytic oxygen evolution activity. Ultrason. Sonochem.2019, 59, 104714.

    CAS  Google Scholar 

  64. Balogun, M. S.; Qiu, W. T.; Yang, H.; Fan, W. J.; Huang, Y. C.; Fang, P. P.; Li, G. R.; Ji, H. B.; Tong, Y. X. A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy Environ. Sci.2016, 9, 3411–3416.

    CAS  Google Scholar 

  65. Fang, Z. Q; Hao, Z. M.; Dong, Q. S.; Cui, Y. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction. J. Nanopart. Res.2018, 20, 106.

    Google Scholar 

  66. Liu, H. D.; Chen, Z. L.; Zhou, L.; Li, X.; Pei, K.; Zhang, J.; Song, Y.; Fang, F.; Che, R. C.; Sun, D. L. Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithium-sulfur batteries. J. Mater. Chem. A2019, 7, 7074–7081.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (973 Project) (No. 2018YFA0209102) and the National Natural Science Foundation of China (Nos. 11727807, 51725101, 51672050, and 61790581)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wang or Renchao Che.

Electronic Supplementary Material

12274_2020_2626_MOESM1_ESM.pdf

Hierarchical coupling effect in hollow Ni/NiFe2O4-CNTs microsphere via spray-drying for enhanced oxygen evolution electrocatalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Chen, G., Wang, Y. et al. Hierarchical coupling effect in hollow Ni/NiFe2O4-CNTs microsphere via spray-drying for enhanced oxygen evolution electrocatalysis. Nano Res. 13, 437–446 (2020). https://doi.org/10.1007/s12274-020-2626-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2626-y

Keywords

Navigation