Skip to main content
Log in

Quasiparticle interference and impurity resonances on WTe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Using scanning tunneling microscopy/spectroscopy (STM/STS), we examine quasiparticle scattering and interference properties at the surface of WTe2. WTe2, layered transition metal dichalcogenide, is predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe2 emerge as topologically protected touching points of electron and hole pockets, and Fermi arcs connecting them can be visible in the spectral function on the surface. To probe the properties of surface states, we have conducted low-temperature STM/STS (at 2.7 K) on the surfaces of WTe2 single crystals. We visualize the surface states of WTe2 with atomic scale resolution. Clear surface states emerging from the bulk electron pocket have been identified and their connection with the bulk electronic states shows good agreement with calculations. We show the interesting double resonance peaks in the local density of states appearing at localized impurities. The low-energy resonant peak occurs near the Weyl point above the Fermi energy and it may be mixed with the surface state of Weyl points, which makes it difficult to observe the topological nature of the Weyl semimetal WTe2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young, S. M.; Zaheer, S.; Teo, J. C. Y.; Kane, C. L.; Mele, E. J.; Rappe, A. M. Dirac semimetal in three dimensions. Phys. Rev. Lett.2012, 108, 140405.

    CAS  Google Scholar 

  2. Tarruell, L.; Greif, D.; Uehlinger, T.; Jotzu, G; Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature2012, 483, 302–305.

    CAS  Google Scholar 

  3. Wang, Z. J.; Sun, Y.; Chen, X. Q.; Franchini, C.; Xu, G.; Weng, H. M.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B2012, 85, 195320.

    Google Scholar 

  4. Singh, B.; Sharma, A.; Lin, H.; Hasan, M. Z.; Prasad, R.; Bansil, A. Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors. Phys. Rev. B2012, 86, 115208.

    Google Scholar 

  5. Smith, J. C.; Banerjee, S.; Pardo, V.; Pickett, W. E. Dirac point degenerate with massive bands at a topological quantum critical point. Phys. Rev. Lett.2011, 106, 056401.

    CAS  Google Scholar 

  6. Liu, C. X.; Ye, P.; Qi, X. L. Chiral gauge field and axial anomaly in a Weyl semimetal. Phys. Rev. B2013, 87, 235306.

    Google Scholar 

  7. Witczak-Krempa, W.; Kim, Y. B. Topological and magnetic phases of interacting electrons in the pyrochlore iridates. Phys. Rev. B2012, 85, 045124.

    Google Scholar 

  8. Xu, G; Weng, H. M.; Wang, Z. J.; Dai, X.; Fang, Z. Chern semimetal and the quantized anomalous hall effect in HgCr2Se4. Phys. Rev. Lett.2011, 107, 186806.

    Google Scholar 

  9. Kobayashi, K.; Ohtsuki, T.; Imura, K. I.; Herbut, I. F. Density of states scaling at the semimetal to metal transition in three dimensional topological insulators. Phys. Rev. Lett.2014, 112, 016402.

    Google Scholar 

  10. Nandkishore, R.; Huse, D. A.; Sondhi, S. L. Rare region effects dominate weakly disordered three-dimensional dirac points. Phys. Rev. B2014, 89, 245110.

    Google Scholar 

  11. Liu, Z. K.; Zhou, B.; Zhang, Y.; Wang, Z. J.; Weng, H. M.; Prabhakaran, D.; Mo, S. K.; Shen, Z. X.; Fang, Z.; Dai, X. et al. Discovery of a three-dimensional topological dirac semimetal, Na3Bi. Science2014, 343, 864–867.

    CAS  Google Scholar 

  12. Borisenko, S.; Gibson, Q.; Evtushinsky, D.; Zabolotnyy, V.; Büchner, B.; Cava, R. J. Experimental realization of a three-dimensional dirac semimetal. Phys. Rev. Lett.2014, 113, 027603.

    Google Scholar 

  13. Neupane, M.; Xu, S. Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T. R.; Jeng, H. T.; Lin, H. et al. Observation of a three-dimensional topological dirac semimetal phase in high-mobility Cd3As2. Nat. Commun.2014, 5, 3786.

    CAS  Google Scholar 

  14. Wan, X. G.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B2011, 83, 205101.

    Google Scholar 

  15. Balents, L. Weyl electrons kiss. Physics2011, 4, 36.

    Google Scholar 

  16. Burkov, A. A.; Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett.2011, 107, 127205.

    CAS  Google Scholar 

  17. Weng, H. M.; Fang, C.; Fang, Z.; Bernevig, B. A.; Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X2015, 5, 011029.

    Google Scholar 

  18. Hosur, P.; Qi, X. L. Recent developments in transport phenomena in Weyl semimetals. CR Phys.2013, 14, 857–870.

    CAS  Google Scholar 

  19. Lv, B. Q.; Weng, H. M.; Fu, B. B.; Wang, X. P.; Miao, H.; Ma, J.; Richard, P.; Huang, X. C.; Zhao, L. X.; Chen, G. F. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X2015, 5, 031013.

    Google Scholar 

  20. Xu, S. Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C. C. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science2015, 349, 613–617.

    CAS  Google Scholar 

  21. Yang, L. X.; Liu, Z. K.; Sun, Y.; Peng, H.; Yang, H. F.; Zhang, T.; Zhou, B.; Zhang, Y.; Guo, Y. F.; Rahn, M. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys.2015, 11, 728–732.

    CAS  Google Scholar 

  22. Batabyal, R.; Morali, N.; Avraham, N.; Sun, Y.; Schmidt, M.; Felser, C.; Stern, A.; Yan, B. H.; Beidenkopf, H. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions. Sci. Adv.2016, 2, e1600709.

  23. Inoue, H.; Gyenis, A.; Wang, Z. J.; Li, J.; Oh, S. W.; Jiang, S.; Ni, N.; Bernevig, B. A.; Yazdani, A. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science2016, 351, 1184–1187.

    CAS  Google Scholar 

  24. Soluyanov, A. A.; Gresch, D.; Wang, Z. J.; Wu, Q. S.; Troyer, M.; Dai, X.; Bernevig, B. A. Type-II Weyl semimetals. Nature, 2015, 527, 495–498.

    CAS  Google Scholar 

  25. Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P. et al. Large, non-saturating magnetoresistance in WTe2. Nature2014, 514, 205–208.

    CAS  Google Scholar 

  26. Kang, D. F.; Zhou, Y. Z.; Yi, W.; Yang, C. L.; Guo, J.; Shi, Y. G.; Zhang, S.; Wang, Z.; Zhang, C.; Jiang, S. et al. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. Nat. Commun.2015, 6, 7804.

    Google Scholar 

  27. Pan, X. C.; Chen, X. L.; Liu, H. M.; Feng, Y. Q.; Wei, Z. X.; Zhou, Y. H.; Chi, Z. H.; Pi, L.; Yen, F.; Song, F. Q. et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nat. Commun.2015, 6, 7805.

    Google Scholar 

  28. Wu, Y.; Mou, D. X.; Jo, N. H.; Sun, K. W.; Huang, L. N.; Bud’ko, S. L.; Canfield, P. C.; Kaminski, A. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B2016, 94, 121113.

    Google Scholar 

  29. Bruno, F. Y.; Tamai, A.; Wu, Q. S.; Cucchi, I.; Barreteau, C.; de la Torre, A.; McKeown Walker, S.; Riccò, S.; Wang, Z.; Kim, T. K. et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B2016, 94, 121112.

    Google Scholar 

  30. Sánchez-Barriga, J.; Vergniory, M. G.; Evtushinsky, D.; Aguilera, I.; Varykhalov, A.; Blügel, S.; Rader, O. Surface Fermi arc connectivity in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B2016, 94, 161401.

    Google Scholar 

  31. Feng, B. J.; Chan, Y. H.; Feng, Y.; Liu, R. Y.; Chou, M. Y.; Kuroda, K.; Yaji, K.; Harasawa, A.; Moras, P.; Barinov, A. et al. Spin texture in type-II Weyl semimetal WTe2. Phys. Rev. B2016, 94, 195134.

    Google Scholar 

  32. Wang, C. L.; Zhang, Y.; Huang, J. W.; Nie, S. M.; Liu, G. D.; Liang, A. J.; Zhang, Y. X.; Shen, B.; Liu, J.; Hu, C. et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B2016, 94, 241119.

    Google Scholar 

  33. Sprunger, P. T.; Petersen, L.; Plummer, E. W.; Lægsgaard, E.; Besenbacher, F. Giant Friedel oscillations on the beryllium(0001) surface. Science1997, 275, 1764–1767.

    CAS  Google Scholar 

  34. Seo, J.; Roushan, P.; Beidenkopf, H.; Hor, Y. S.; Cava, R. J.; Yazdani, A. Transmission of topological surface states through surface barriers. Nature2010, 466, 343–346.

    CAS  Google Scholar 

  35. Okada, Y.; Dhital, C.; Zhou, W. W.; Huemiller, E. D.; Lin, H.; Basak, S.; Bansil, A.; Huang, Y. B.; Ding, H.; Wang, Z. et al. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Phys. Rev. Lett.2011, 106, 206805.

    Google Scholar 

  36. Simon, L.; Bena, C.; Vonau, F.; Cranney, M.; Aubel, D. Fouriertransform scanning tunnelling spectroscopy: The possibility to obtain constant-energy maps and band dispersion using a local measurement. J. Phys. D: Appl. Phys.2011, 44, 464010.

    Google Scholar 

  37. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996, 6, 15–50.

    CAS  Google Scholar 

  38. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    CAS  Google Scholar 

  39. Chen, L.; Cheng, P.; Wu, K. H. Quasiparticle interference in unconventional 2D systems. J. Phys.: Condens. Matter2017, 29, 103001.

    Google Scholar 

  40. Wang, J.; Li, W.; Cheng, P.; Song, C. L.; Zhang, T.; Deng, P.; Chen, X.; Ma, X. C.; He, K.; Jia, J. F. et al. Power-Law decay of standing waves on the surface of topological insulators. Phys. Rev. B2011, 54, 235447.

    Google Scholar 

  41. Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett.1980, 45, 566–569.

    CAS  Google Scholar 

  42. Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B1981, 23, 5048–5079.

    CAS  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B1994, 50, 17953–17979.

    Google Scholar 

  44. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B1993, 45, 13115–13118.

    Google Scholar 

  45. Sancho, M. P. L.; Sancho, J. M. L.; Sancho, J. M. L.; Rubio, J. Highly convergent schemes for the calculation of bulk and surface green functions. J. Phys. F: Met. Phys.1985, 15, 851–858.

    Google Scholar 

  46. Wu, Q. S.; Zhang, S. N.; Song, H. F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun.2018, 224, 405–416.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Lee and J. Heo for useful discussions and other colleagues at the Samsung Advanced Institute of Technology (SAIT). This work has been supported by the Global Research Laboratory Program (No. 2016K1A1A2912707), Quantum Computing Development Program (No. 2019M3E4A1080227), the Basic Science Research Program (No. 2015M3A7B4050455) and the SRC Center for Topological Matter (No. 2018R1A5A6075964) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT) in Korea. This work has been supported by Industrial Strategic Technology Development Program (No. 10085617) funded by the Ministry of Trade Industry & Energy (MOTIE) in Korea. This work has been supported by Institute for Basic Science (No. IBS-R011-D1). Supercomputing resources including technical service were supported by National Institute of Supercomputing and Network through Korea Institute of Science and Technology Information (No. KSC-2018-S1-0008).

Author information

Authors and Affiliations

Authors

Contributions

H. K. and E. H. designed the project. H. K. carried out the STM experiments with the help of Y. O., and I. J. and analyzed the STM data with T. J.. S. A., T. J., and E. H. performed ab initio calculations. S. P. and S. H. supervised the project. H. K., S. A., T. J., Y. J. S. and E. H. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Seongjun Park, Young Jae Song or Euyheon Hwang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Jeong, T., Appalakondaiah, S. et al. Quasiparticle interference and impurity resonances on WTe2. Nano Res. 13, 2534–2540 (2020). https://doi.org/10.1007/s12274-020-2892-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2892-8

Keywords

Navigation