Skip to main content
Log in

Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electronic textiles (e-textiles), known as a newly-developed innovation combining the textile and electronic technologies, are burgeoning as the next-generation of wearable electronics for lots of promising applications. However, a big concern is the durability of the e-textiles during practical using. Here, we describe a facile method to fabricate mechanically and electrically durable e-textiles by chemical deposition of silver nanoparticles (AgNPs) on widely used cotton fabric. The interface between AgNPs and fabric was tightly strengthened by the bioinspired polydopamine, and a highly waterproof and anticorrosive surface was further obtained by modifying with a fluorine containing agent of 1H,1H,2H,2H-perfuorodecanethiol (PFDT). In addition to the low sheet resistance of 0.26 ohm/sq and high conductivity of 233.4 S/cm, the e-textiles present outstanding stability to different mechanical deformations including ultrasonication, bending and machine washing. Moreover, thanks to the surface roughness of AgNPs and low surface energy of PFDT, a superhydrophobic surface, with a water contact angle of ca. 152°, was further obtained, endowing the e-textiles excellent anti-corrosion to water, acid/alkaline solution and various liquids (e.g., milk, coffee and tea). Finally, the application of this highly conductive e-textiles in wearable thermal therapy is demonstrated. Together with the facile, all-solution-based, and environmentally friendly fabrication protocol, the e-textiles show great potential of large-scale applications in wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skinmountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678–1698.

    Article  CAS  Google Scholar 

  2. Li, X. T.; Hu, H. B.; Hua, T.; Xu, B. G.; Jiang, S. X. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res. 2018, 11, 5799–5811.

    Article  CAS  Google Scholar 

  3. Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.

    Article  CAS  Google Scholar 

  4. Choi, S.; Kwon, S.; Kim, H.; Kim, W.; Kwon, J. H.; Lim, M. S.; Lee, H. S.; Choi, K. C. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci. Rep. 2017, 7, 6424.

    Article  CAS  Google Scholar 

  5. Kwon, S.; Hwang, Y. H.; Nam, M.; Chae, H.; Lee, H. S.; Jeon, Y.; Lee, S.; Kim, C. Y.; Choi, S.; Jeong, E. G. et al. Recent progress of fiber shaped lighting devices for smart display applications—a fibertronic perspective. Adv. Mater. 2020, 32, 1903488.

    Article  CAS  Google Scholar 

  6. Weng, W.; Chen, P. N.; He, S. S.; Sun, X. M.; Peng, H. S. Smart electronic textiles. Angew. Chem., Int. Ed. 2016, 55, 6140–6169.

    Article  CAS  Google Scholar 

  7. Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

    Article  CAS  Google Scholar 

  8. Min, X.; Sun, B.; Chen, S.; Fang, M. H.; Wu, X. W.; Liu, Y. G.; Abdelkader, A.; Huang, Z. H.; Liu, T.; Xi, K. et al. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 2019, 16, 597–606.

    Article  Google Scholar 

  9. Seyedin, S.; Zhang, P.; Naebe, M.; Qin, S.; Chen, J.; Wang, X. G.; Razal, J. M. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 2019, 6, 219–249.

    Article  CAS  Google Scholar 

  10. Castano, L. M.; Flatau, A. B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001.

    Article  CAS  Google Scholar 

  11. Mu, J. K.; Wang, G.; Yan, H. P.; Li, H. Y.; Wang, X. M.; Gao, E. L.; Hou, C. Y.; Pham, A. T. C.; Wu, L. J.; Zhang, Q. H. et al. Molecularchannel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 2018, 9, 590.

    Article  CAS  Google Scholar 

  12. Cai, G. M.; Yang, M. Y.; Xu, Z. L.; Liu, J. G.; Tang, B.; Wang, X. G. Flexible and wearable strain sensing fabrics. Chem. Eng. J. 2017, 325, 396–403.

    Article  CAS  Google Scholar 

  13. Yang, Z.; Pang, Y.; Han, X. L.; Yang, Y. F.; Ling, J.; Jian, M. Q.; Zhang, Y. Y.; Yang, Y.; Ren, T. L. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 2018, 12, 9134–9141.

    Article  CAS  Google Scholar 

  14. Afroj, S.; Tan, S. R.; Abdelkader, A. M.; Novoselov, K. S.; Karim, N. Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv. Funct. Mater. 2020, 30, 2000293.

    Article  CAS  Google Scholar 

  15. Karim, N.; Zhang, M. L. H.; Afroj, S.; Koncherry, V.; Potluri, P.; Novoselov, K. S. Graphene-based surface heater for de-icing applications. RSC Adv. 2018, 8, 16815–16823.

    Article  CAS  Google Scholar 

  16. Du, D. H.; Tang, Z. H.; Ouyang, J.Y. Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers. J. Mater. Chem. C 2018, 6, 883–889.

    Article  CAS  Google Scholar 

  17. Li, Y.; Cheng, X. Y.; Leung, M. Y.; Tsang, J.; Tao, X. M.; Yuen, M. C. W. A flexible strain sensor from polypyrrole-coated fabrics. Synth. Met. 2005, 155, 89–94.

    Article  CAS  Google Scholar 

  18. Wu, B. T.; Zhang, B. W.; Wu, J. X.; Wang, Z. Q.; Ma, H. J.; Yu, M.; Li, L. F.; Li, J. Y. Electrical switchability and dry-wash durability of conductive textiles. Sci. Rep. 2015, 5, 11255.

    Article  CAS  Google Scholar 

  19. Cui, H. W.; Suganuma, K.; Uchida, H. Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Res. 2015, 8, 1604–1614.

    Article  CAS  Google Scholar 

  20. La, T. G.; Qiu, S. D.; Scott, D. K.; Bakhtiari, R.; Kuziek, J. W. P.; Mathewson, K. E.; Rieger, J.; Chung, H. J. Two-layered and stretchable e-textile patches for wearable healthcare electronics. Adv. Healthc. Mater. 2018, 7, 1801033.

    Article  CAS  Google Scholar 

  21. Li, Y. D.; Li, Y. N.; Su, M.; Li, W. B.; Li, Y. F.; Li, H. Z.; Qian, X.; Zhang, X. Y.; Li, F. Y.; Song, Y. L. Electronic textile by dyeing method for multiresolution physical kineses monitoring. Adv. Electron. Mater. 2017, 3, 1700253.

    Article  CAS  Google Scholar 

  22. Lee, T.; Lee, W.; Kim, S. W.; Kim, J. J.; Kim, B. S. Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv. Funct. Mater. 2016, 26, 6206–6214.

    Article  CAS  Google Scholar 

  23. He, S.; Xin, B. J.; Chen, Z. M.; Liu, Y. Flexible and highly conductive Ag/G-coated cotton fabric based on graphene dipping and silver magnetron sputtering. Cellulose 2018, 25, 3691–3701.

    Article  CAS  Google Scholar 

  24. Kim, S. J.; Song, W.; Yi, Y.; Min, B. K.; Mondal, S.; An, K. S.; Choi, C. G. High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces 2018, 10, 3921–3928.

    Article  CAS  Google Scholar 

  25. Karim, N.; Afroj, S.; Tan, S. R.; Novoselov, K. S.; Yeates, S. G. All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Sci. Rep. 2019, 9, 8035.

    Article  CAS  Google Scholar 

  26. Bi, S. Y.; Hou, L.; Zhao, H.; Zhu, L.; Lu, Y. X. Ultrasensitive and highly repeatable pen ink decorated cuprammonium rayon (cupra) fabrics for multifunctional sensors. J. Mater. Chem. A 2018, 6, 16556–16565.

    Article  CAS  Google Scholar 

  27. Wang, G.; Feng, L. W.; Huang, W.; Mukherjee, S.; Chen, Y.; Shen, D. K.; Wang, B. H.; Strzalka, J.; Zheng, D.; Melkonyan, F. S. et al. Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems. Proc. Natl. Acad. Sci. USA 2020, 117, 17551–17557.

    Article  CAS  Google Scholar 

  28. Ren, J. S.; Wang, C. X.; Zhang, X.; Carey, T.; Chen, K. L.; Yin, Y. J.; Torrisi, F. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 2017, 111, 622–630.

    Article  CAS  Google Scholar 

  29. Harris, K. D.; Elias, A. L.; Chung, H. J. Flexible electronics under strain: A review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 2016, 51, 2771–2805.

    Article  CAS  Google Scholar 

  30. Zhao, Z. Z.; Yan, C.; Liu, Z. X.; Fu, X. L.; Peng, L. M.; Hu, Y. F.; Zheng, Z. J. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267–10274.

    Article  CAS  Google Scholar 

  31. Yetisen, A. K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M. R.; Hinestroza, J. P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S. H. Nanotechnology in textiles. ACS Nano 2016, 10, 3042–3068.

    Article  CAS  Google Scholar 

  32. Nel, A.; Xia, T.; Meng, H.; Wang, X.; Lin, S. J.; Ji, Z. X.; Zhang, H. Y. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2013, 46, 607–621.

    Article  CAS  Google Scholar 

  33. Zheng, Y. J.; Li, Y. L.; Zhou, Y. J.; Dai, K.; Zheng, G. Q.; Zhang, B.; Liu, C. T.; Shen, C. Y. High-performance wearable strain sensor based on graphene/cotton fabric with high durability and low detection limit. ACS Appl. Mater. Interfaces 2020, 12, 1474–1485.

    Article  CAS  Google Scholar 

  34. Wang, C. Y.; Li, X.; Gao, E. L.; Jian, M. Q.; Xia, K. L.; Wang, Q.; Xu, Z. P.; Ren, T. L.; Zhang, Y. Y. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 2016, 28, 6640–6648.

    Article  CAS  Google Scholar 

  35. Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795.

    Article  CAS  Google Scholar 

  36. Wang, C. Y.; Xia, K. L.; Jian, M. Q.; Wang, H. M.; Zhang, M. C.; Zhang, Y. Y. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C 2017, 5, 7604–7611.

    Article  CAS  Google Scholar 

  37. Li, P.; Zhang, Y. K.; Zheng, Z. J. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices. Adv. Mater. 2019, 31, 1902987.

    Article  CAS  Google Scholar 

  38. Liu, X. Q.; Chang, H. X.; Li, Y.; Huck, W. T. S.; Zheng, Z. J. Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS Appl. Mater. Interfaces 2010, 2, 529–535.

    Article  CAS  Google Scholar 

  39. Wang, L.; Chen, Y.; Lin, L. W.; Wang, H.; Huang, X. W.; Xue, H. G.; Gao, J. F. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 2019, 362, 89–98.

    Article  CAS  Google Scholar 

  40. Lin, L. W.; Wang, L.; Li, B.; Luo, J. C.; Huang, X. W.; Gao, Q.; Xue, H. G.; Gao, J. F. Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 2020, 385, 123391.

    Article  CAS  Google Scholar 

  41. Yang, Y.; Huang, Q. Y.; Niu, L. Y.; Wang, D. R.; Yan, C.; She, Y. Y.; Zheng, Z. J. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 2017, 29, 1606679.

    Article  CAS  Google Scholar 

  42. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Musselinspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

    Article  CAS  Google Scholar 

  43. Ryu, J. H.; Messersmith, P. B.; Lee, H. Polydopamine surface chemistry: A decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540.

    Article  CAS  Google Scholar 

  44. Barclay, T. G.; Hegab, H. M.; Clarke, S. R.; Ginic-Markovic, M. Versatile surface modification using polydopamine and related polycatecholamines: Chemistry, structure, and applications. Adv. Mater. Interfaces 2017, 4, 1601192.

    Article  CAS  Google Scholar 

  45. Ye, Q.; Zhou, F.; Liu, W. M. Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 2011, 40, 4244–4258.

    Article  CAS  Google Scholar 

  46. Wang, W. C.; Jiang, Y.; Wen, S. P.; Liu, L.; Zhang, L. Q. Preparation and characterization of polystyrene/Ag core-shell microspheres-A bio-inspired poly (dopamine) approach. J. Colloid Interface Sci. 2012, 368, 241–249.

    Article  CAS  Google Scholar 

  47. Yin, Y. D.; Li, Z. Y.; Zhong, Z. Y.; Gates, B.; Xia, Y. N.; Venkateswaran, S. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem. 2002, 12, 522–527.

    Article  CAS  Google Scholar 

  48. Wang, Y. L.; Hao, J.; Huang, Z. Q.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 2018, 126, 360–371.

    Article  CAS  Google Scholar 

  49. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533–1554.

    Article  CAS  Google Scholar 

  50. Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.

    Article  CAS  Google Scholar 

  51. Liu, Z. X.; Zhang, X.; Liu, C.; Li, D. Y.; Zhang, M. X.; Yin, F. X.; Xin, G. Q.; Wang, G. K. Ferroconcrete-inspired design of a nonwoven graphene fiber fabric reinforced electrode for flexible fast-charging sodium ion storage devices. J. Mater. Chem. A 2020, 8, 2777–2788.

    Article  CAS  Google Scholar 

  52. Ding, Y. J.; Invernale, M. A.; Sotzing, G. A. Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. ACS Appl. Mater. Interfaces 2010, 2, 1588–1593.

    Article  CAS  Google Scholar 

  53. Oh, K. W.; Park, H. J.; Kim, S. H. Stretchable conductive fabric for electrotherapy. J. Appl. Polym. Sci. 2003, 88, 1225–1229.

    Article  CAS  Google Scholar 

  54. Lu, H. C.; Chen, J. Z.; Tian, Q. H. Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles. J. Colloid Interface Sci. 2018, 513, 342–348.

    Article  CAS  Google Scholar 

  55. Liu, X. S.; Cao, J. M.; Li, H.; Li, J. Y.; Jin, Q.; Ren, K. F.; Ji, J. Mussel-inspired polydopamine: A biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano 2013, 7, 9384–9395.

    Article  CAS  Google Scholar 

  56. Jiang, J. H.; Zhu, L. P.; Zhu, L. J.; Zhu, B. K.; Xu, Y. Y. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 2011, 27, 14180–14187.

    Article  CAS  Google Scholar 

  57. Liu, H.; Li, Q. M.; Bu, Y. B.; Zhang, N.; Wang, C. F.; Pan, C. F.; Mi, L. W.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy 2019, 66, 104143.

    Article  CAS  Google Scholar 

  58. Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

    Article  CAS  Google Scholar 

  59. Wang, S. T.; Liu, K. S.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293.

    Article  CAS  Google Scholar 

  60. Liao, X. Q.; Liao, Q. L.; Yan, X. Q.; Liang, Q. J.; Si, H. N.; Li, M. H.; Wu, H. L.; Cao, S. Y.; Zhang, Y. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 2015, 25, 2395–2401.

    Article  CAS  Google Scholar 

  61. Liu, H. B.; Jiang, H. E.; Du, F.; Zhang, D. P.; Li, Z. J.; Zhou, H. W. Flexible and degradable paper-based strain sensor with low cost. ACS Sustainable Chem. Eng. 2017, 5, 10538–10543.

    Article  CAS  Google Scholar 

  62. Holm, R. Electric Contacts: Theory and Application; Springer Science & Business Media: Berlin, 2013.

    Google Scholar 

  63. Cheng, Y.; Zhang, H.; Wang, R. R.; Wang, X.; Zhai, H. T.; Wang, T.; Jin, Q. H.; Sun, J. Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters. ACS Appl. Mater. Interfaces 2016, 8, 32925–32933.

    Article  CAS  Google Scholar 

  64. Zhang, M. C.; Wang, C. Y.; Liang, X. P.; Yin, Z.; Xia, K. L.; Wang, H. M.; Jian, M. Q.; Zhang, Y. Y. Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv. Electron. Mater. 2017, 3, 1700193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Research Grant Council of Hong Kong with the Project of PolyU 252024/16(E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Hua.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, B., Yang, S., Hua, T. et al. Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Res. 14, 1043–1052 (2021). https://doi.org/10.1007/s12274-020-3148-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3148-3

Keywords

Navigation