Skip to main content
Log in

Visualizing nonlinear resonance in nanomechanical systems via single-electron tunneling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Numerous reports have elucidated the importance of mechanical resonators comprising quantum-dot-embedded carbon nanotubes (CNTs) for studying the effects of single-electron transport. However, there is a need to investigate the single-electron transport that drives a large amplitude into a nonlinear regime. Herein, a CNT hybrid device has been investigated, which comprises a gate-defined quantum dot that is embedded into a mechanical resonator under strong actuation conditions. The Coulomb peak positions synchronously oscillate with the mechanical vibrations, enabling a single-electron “chopper” mode. Conversely, the vibration amplitude of the CNT versus its frequency can be directly visualized via detecting the time-averaged single-electron tunneling current. To understand this phenomenon, a general formula is derived for this time-averaged single-electron tunneling current, which agrees well with the experimental results. By using this visualization method, a variety of nonlinear motions of a CNT mechanical oscillator have been directly recorded, such as Duffing nonlinearity, parametric resonance, and double-, fractional-, mixed- frequency excitations. This approach opens up burgeoning opportunities for investigating and understanding the nonlinear motion of a nanomechanical system and its interactions with electron transport in quantum regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnard, A. W.; Zhang, M.; Wiederhecker, G. S.; Lipson, M.; McEuen, P. L. Real-time vibrations of a carbon nanotube. Nature 2019, 566, 89–93.

    Article  CAS  Google Scholar 

  2. Matheny, M. H.; Villanueva, L. G.; Karabalin, R. B.; Sader, J. E.; Roukes, M. L. Nonlinear mode-coupling in nanomechanical systems. Nano Lett. 2013, 13, 1622–1626.

    Article  CAS  Google Scholar 

  3. Eichler, A.; Moser, J.; Dykman, M. I.; Bachtold, A. Symmetry breaking in a mechanical resonator made from a carbon nanotube. Nat. Commun. 2013, 4, 2843.

    Article  CAS  Google Scholar 

  4. Barnard, A. W.; Sazonova, V.; van der Zande, A. M.; McEuen, P. L. Fluctuation broadening in carbon nanotube resonators. Proc. Natl. Acad. Sci. USA 2012, 109, 19093–19096.

    Article  CAS  Google Scholar 

  5. Maillet, O.; Zhou, X.; Gazizulin, R.; Cid, A. M.; Defoort, M.; Bourgeois, O.; Collin, E. Nonlinear frequency transduction of nanomechanical Brownian motion. Phys. Rev. B 2017, 96, 165434.

    Article  Google Scholar 

  6. Willick, K.; Tang, X. W.; Baugh, J. Probing the non-linear transient response of a carbon nanotube mechanical oscillator. Appl. Phys. Lett. 2017, 111, 223108.

    Article  Google Scholar 

  7. Lassagne, B.; Tarakanov, Y.; Kinaret, J.; Garcia-Sanchez, D.; Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 2009, 325, 1107–1110.

    Article  CAS  Google Scholar 

  8. Steele, G. A.; Hüttel, A. K.; Witkamp, B.; Poot, M.; Meerwaldt, H. B.; Kouwenhoven, L. P.; van der Zant, H. S. J. Strong coupling between single-electron tunneling and nanomechanical motion. Science 2009, 325, 1103–1107.

    Article  CAS  Google Scholar 

  9. Götz, K. J. G.; Schmid, D. R.; Schupp, F. J.; Stiller, P. L.; Strunk, C.; Hüttel, A. K. Nanomechanical characterization of the Kondo charge dynamics in a carbon nanotube. Phys. Rev. Lett. 2018, 120, 246802.

    Article  Google Scholar 

  10. Wen, Y. T.; Ares, N.; Pei, T.; Briggs, G. A. D.; Laird, E. A. Measuring carbon nanotube vibrations using a single-electron transistor as a fast linear amplifier. Appl. Phys. Lett. 2018, 113, 153101.

    Article  Google Scholar 

  11. Häkkinen, P.; Isacsson, A.; Savin, A.; Sulkko, J.; Hakonen, P. Charge sensitivity enhancement via mechanical oscillation in suspended carbon nanotube devices. Nano Lett. 2015, 15, 1667–1672.

    Article  Google Scholar 

  12. Micchi, G.; Avriller, R.; Pistolesi, F. Mechanical signatures of the current blockade instability in suspended carbon nanotubes. Phys. Rev. Lett. 2015, 115, 206802.

    Article  CAS  Google Scholar 

  13. Benyamini, A.; Hamo, A.; Kusminskiy, S. V.; von Oppen, F.; Ilani, S. Real-space tailoring of the electron-phonon coupling in ultraclean nanotube mechanical resonators. Nat. Phys. 2014, 10, 151–156.

    CAS  Google Scholar 

  14. Castellanos-Gomez, A.; Meerwaldt, H. B.; Venstra, W. J.; van der Zant, H. S. J.; Steele, G. A. Strong and tunable mode coupling in carbon nanotube resonators. Phys. Rev. B 2012, 86, 041402(R).

    Article  Google Scholar 

  15. Wen, Y. T.; Ares, N.; Schupp, F. J.; Pei, T.; Briggs, G. A. D.; Laird, E. A. A coherent nanomechanical oscillator driven by single-electron tunnelling. Nat. Phys. 2020, 16, 75–82.

    Article  CAS  Google Scholar 

  16. Blien, S.; Steger, P.; Hüttner, N.; Graaf, R.; Hüttel, A. K. Quantum capacitance mediated carbon nanotube optomechanics. Nat. Commun. 2020, 11, 1636.

    Article  Google Scholar 

  17. Urgell, C.; Yang, W.; De Bonis, S. L.; Samanta, C.; Esplandiu, M. J.; Dong, Q.; Jin, Y.; Bachtold, A. Cooling and self-oscillation in a nanotube electromechanical resonator. Nat. Phys. 2020, 16, 32–37.

    Article  CAS  Google Scholar 

  18. Lifshitz, R.; Cross, M. C. Nonlinear dynamics of nanomechanical resonators. In Nonlinear Dynamics of Nanosystems; Radons, G.; Rumpf, B.; Schuster, H. G., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp 221–266.

    Chapter  Google Scholar 

  19. Nayfeh, A. H.; Mook, D. T. Nonlinear Oscillations; John Wiley & Sons: New York, 1995.

    Book  Google Scholar 

  20. Deng, G. W.; Zhu, D.; Wang, X. H.; Zou, C. L.; Wang, J. T.; Li, H. O.; Cao, G.; Liu, D.; Li, Y.; Xiao, M. et al. Strongly coupled nanotube electromechanical resonators. Nano Lett. 2016, 16, 5456–5462.

    Article  CAS  Google Scholar 

  21. Zhang, R. F.; Ning, Z. Y.; Zhang, Y. Y.; Zheng, Q. S.; Chen, Q.; Xie, H. H.; Zhang, Q.; Qian, W. Z.; Wei, F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 2013, 8, 912–916.

    Article  CAS  Google Scholar 

  22. Sapmaz, S.; Jarillo-Herrero, P.; Kouwenhoven, L. P.; van der Zant, H. S. J. Quantum dots in carbon nanotubes. Semicond. Sci. Technol. 2006, 21, S52–S63.

    Article  CAS  Google Scholar 

  23. Zhang, Y.; Liu, G.; Lau, C. N. Phase diffusion in single-walled carbon nanotube Josephson transistors. Nano Res. 2008, 1, 145–151.

    Article  CAS  Google Scholar 

  24. Zhu, D.; Wang, X. H.; Kong, W. C.; Deng, G. W.; Wang, J. T.; Li, H. O.; Cao, G.; Xiao, M.; Jiang, K. L.; Dai, X. C. et al. Coherent phonon Rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Lett. 2017, 17, 915–921.

    Article  CAS  Google Scholar 

  25. Hüttel, A. K.; Meerwaldt, H. B.; Steele, G. A.; Poot, M.; Witkamp, B.; Kouwenhoven, L. P.; van der Zant, H. S. J. Single electron tunnelling through high-Q single-wall carbon nanotube NEMS resonators. Phys. Status Solidi B 2010, 247, 2974–2979.

    Article  Google Scholar 

  26. Koenig, D. R.; Weig, E. M.; Kotthaus, J. P. Ultrasonically driven nanomechanical single-electron shuttle. Nat. Nanotechnol. 2008, 3, 482–485.

    Article  CAS  Google Scholar 

  27. Shi, Z. W.; Lu, H. L.; Zhang, L. C.; Yang, R.; Wang, Y.; Liu, D. H.; Guo, H. M.; Shi, D. X.; Gao, H. J.; Wang, E. G. et al. Studies of graphene-based nanoelectromechanical switches. Nano Res. 2012, 5, 82–87.

    Article  CAS  Google Scholar 

  28. Wang, X. H.; Zhu, D.; Yang, X. H.; Yuan, L.; Li, H. O.; Wang, J. T.; Chen, M.; Deng, G. W.; Liang, W. J.; Li, Q. Q. et al. Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. Nano Res. 2018, 11, 5812–5822.

    Article  CAS  Google Scholar 

  29. Eichler, A.; del Álamo Ruiz, M.; Plaza, J. A.; Bachtold, A. Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 2012, 109, 025503.

    Article  CAS  Google Scholar 

  30. Kozinsky, I.; Postma, H. W. C.; Bargatin, I.; Roukes, M. L. Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 2006, 88, 253101.

    Article  Google Scholar 

  31. Rhoads, J. F.; Shaw, S. W.; Turner, K. L. Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Sys., Meas., Control 2010, 132, 034001.

    Article  Google Scholar 

  32. Okamoto, H.; Gourgout, A.; Chang, C. Y.; Onomitsu, K.; Mahboob, I.; Chang, E. Y.; Yamaguchi, H. Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys. 2013, 9, 480–484.

    Article  CAS  Google Scholar 

  33. Faust, T.; Rieger, J.; Seitner, M. J.; Kotthaus, J. P.; Weig, E. M. Coherent control of a classical nanomechanical two-level system. Nat. Phys. 2013, 9, 485–488.

    Article  CAS  Google Scholar 

  34. Chen, C. Y.; Zanette, D. H.; Czaplewski, D. A.; Shaw, S.; López, D. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nat. Commun. 2017, 8, 15523.

    Article  CAS  Google Scholar 

  35. Woolley, M. J.; Milburn, G. J.; Caves, C. M. Nonlinear quantum metrology using coupled nanomechanical resonators. New J. Phys. 2008, 10, 125018.

    Article  Google Scholar 

  36. Beenakker, C. W. J. Theory of coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 1991, 44, 1646–1656.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2018YFA0208400 and 2018YFA0306102), the National Natural Science Foundation of China (Nos. 11904014, 51727805, 91836102 and 61704164), the China Postdoctoral Science Foundation (Nos. 2018M641152 and BX20180022), the Beijing Advanced Innovation Center for Future Chips (ICFC), and the Beijing Advanced Innovation Centre for Big Data and Brain Computing (BDBC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Wei Deng or Kaili Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cong, L., Zhu, D. et al. Visualizing nonlinear resonance in nanomechanical systems via single-electron tunneling. Nano Res. 14, 1156–1161 (2021). https://doi.org/10.1007/s12274-020-3165-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3165-2

Keywords

Navigation