Skip to main content
Log in

Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is well-known that microscale gaps or defects are ubiquitous and can be penetrated by vapor, resulting in the failure of superhydrophobic effect and undesired condensate flooding under high subcooling. Here, we propose and demonstrate that such problem can be solved by the oblique arrangement of nanowires. Such a structure has been demonstrated to own anti-vapor- penetration and microdrop self-transport functions under high subcooling, unaffected by the microscale gaps. This is because vapor molecules can be intercepted by oblique nanowires and preferentially nucleate at near-surface locations, avoiding the penetration of vapor into the microscale gaps. As-formed microdrops can suspend upon the nanowires and have low solid-liquid adhesion. Besides, oblique nanowires can generate asymmetric surface tension and microdrop coalescence can release driving energy, both of which facilitate the microdrop self-removal via sweeping and jumping ways. This new design idea helps develop more advanced condensation mass and heat transfer interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, H. J.; Preston, D. J.; Zhu, Y. Y.; Wang, E. N. Nanoengineered materials for liquid-vapour phase-change heat transfer. Nat. Rev. Mater. 2017, 2, 16092.

    Article  CAS  Google Scholar 

  2. Wen, R. F.; Ma, X. H.; Lee, Y. C.; Yang, R. G. Liquid-vapor phase- change heat transfer on functionalized nanowired surfaces and beyond. Joule 2018, 2, 2307–2347.

    Article  CAS  Google Scholar 

  3. Daniel, S.; Chaudhury, M. K.; Chen, J. C. Fast drop movements resulting from the phase change on a gradient surface. Science 2001, 291, 633–636.

    Article  CAS  Google Scholar 

  4. Qu, X. P.; Boreyko, J. B.; Liu, F. J.; Agapov, R. L.; Lavrik, N. V.; Retterer, S. T.; Feng, J. J.; Collier, C. P.; Chen, C. H. Self-propelled sweeping removal of dropwise condensate. Appl. Phys. Lett. 2015, 106, 221601.

    Article  Google Scholar 

  5. Peng, Q.; Jia, L.; Guo, J.; Dang, C.; Ding, Y.; Yin, L. F.; Yan, Q. Forced jumping and coalescence-induced sweeping enhanced the dropwise condensation on hierarchically microgrooved superhydrophobic surface. Appl. Phys. Lett. 2019, 114, 133106.

    Article  Google Scholar 

  6. Gong, X. J.; Gao, X. F.; Jiang, L. Recent progress in bionic condensate microdrop self-propelling surfaces. Adv. Mater. 2017, 29, 1703002.

    Article  Google Scholar 

  7. Luo, Y. T.; Li, J.; Zhu, J.; Zhao, Y.; Gao, X. F. Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces. Angew. Chem., Int. Ed. 2015, 54, 4876–4879.

    Article  CAS  Google Scholar 

  8. Liu, J.; Guo, H. Y.; Zhang, B.; Qiao, S. S.; Shao, M. Z.; Zhang, X. R.; Feng, X. Q.; Li, Q. Y.; Song, Y. L.; Jiang, L. et al. Guided self- propelled leaping of droplets on a micro-anisotropic superhydrophobic surface. Angew. Chem., Int. Ed. 2016, 55, 4265–4269.

    Article  CAS  Google Scholar 

  9. Chen, C. H.; Cai, Q. J.; Tsai, C.; Chen, C. L.; Xiong, G. Y.; Yu, Y.; Ren, Z. F. Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl. Phys. Lett. 2007, 90, 173108.

    Article  Google Scholar 

  10. Aili, A.; Li, H. X.; Alhosani, M. H.; Zhang, T. J. Unidirectional fast growth and forced jumping of stretched droplets on nanostructured microporous surfaces. ACS Appl. Mater. Interfaces 2016, 8, 21776–21786.

    Article  CAS  Google Scholar 

  11. Miljkovic, N.; Enright, R.; Wang, E. N. Effect of droplet mor- phology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 2012, 6, 1776–1785.

    Article  CAS  Google Scholar 

  12. Chen, X. M.; Wu, J.; Ma, R. Y.; Hua, M.; Koratkar, N.; Yao, S. H.; Wang, Z. K. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 2011, 21, 4617–4623.

    Article  CAS  Google Scholar 

  13. Miljkovic, N.; Enright, R.; Nam, Y.; Lopez, K.; Dou, N.; Sack, J.; Wang, E. N. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 2013, 13, 179–187.

    Article  CAS  Google Scholar 

  14. Zhao, Y.; Luo, Y. T.; Zhu, J.; Li, J.; Gao, X. F. Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance. ACS Appl. Mater. Interfaces 2015, 7, 11719–11723.

    Article  CAS  Google Scholar 

  15. Zhu, J.; Luo, Y. T.; Tian, J.; Li, J.; Gao, X. F. Clustered ribbed- nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance. ACS Appl. Mater. Interfaces 2015, 7, 10660–10665.

    Article  CAS  Google Scholar 

  16. Wang, R.; Zhu, J.; Meng, K. X.; Wang, H.; Deng, T.; Gao, X. F.; Jiang, L. Bio-inspired superhydrophobic closely packed aligned nanoneedle architectures for enhancing condensation heat transfer. Adv. Funct. Mater. 2018, 28, 1800634.

    Article  Google Scholar 

  17. Hou, Y. M.; Shang, Y. H.; Yu, M.; Feng, C. X.; Yu, H. Y.; Yao, S. H. Tunable water harvesting surfaces consisting of biphilic nanoscale topography. ACS Nano 2018, 12, 11022–11030.

    Article  CAS  Google Scholar 

  18. Wen, R. F.; Li, Q.; Wu, J. F.; Wu, G. S.; Wang, W.; Chen, Y. F.; Ma, X. H.; Zhao, D. L.; Yang, R. G. Hydrophobic copper nanowires for enhancing condensation heat transfer. Nano Energy 2017, 33, 177–183.

    Article  CAS  Google Scholar 

  19. Wen, R. F.; Xu, S. S.; Ma, X. H.; Lee, Y. C.; Yang, R. G. Three- dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer. Joule 2018, 2, 269–279.

    Article  CAS  Google Scholar 

  20. Wang, R.; Wu, F. F.; Xing, D. D.; Yu, F. F.; Gao, X. F. Density maximization of one-step electrodeposited copper nanocones and dropwise condensation heat-transfer performance evaluation. ACS Appl. Mater. Interfaces 2020, 12, 24512–24520.

    Article  CAS  Google Scholar 

  21. Ölçeroğlu, E.; McCarthy, M. Self-organization of microscale con- densate for delayed flooding of nanostructured superhydrophobic surfaces. ACS Appl. Mater. Interfaces 2016, 8, 5729–5736.

    Article  Google Scholar 

  22. Mouterde, T.; Lehoucq, G.; Xavier, S.; Checco, A.; Black, C. T.; Rahman, A.; Midavaine, T.; Clanet, C.; Quéré, D. Antifogging abilities of model nanotextures. Nat. Mater. 2017, 16, 658–663.

    Article  CAS  Google Scholar 

  23. Fan, J. G.; Dyer, D.; Zhang, G.; Zhao, Y. P. Nanocarpet effect: Pattern formation during the wetting of vertically aligned nanorod arrays. Nano Lett. 2004, 4, 2133–2138.

    Article  CAS  Google Scholar 

  24. Enright, R.; Miljkovic, N.; Sprittles, J.; Nolan, K.; Mitchell, R.; Wang, E. N. How coalescing droplets jump. ACS Nano 2014, 8, 10352–10362.

    Article  CAS  Google Scholar 

  25. Tian, J.; Zhu, J.; Guo, H. Y.; Li, J.; Feng, X. Q.; Gao, X. F. Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles. J. Phys. Chem. Lett. 2014, 5, 2084–2088.

    Article  CAS  Google Scholar 

  26. Liu, F. J.; Ghigliotti, G.; Feng, J. J.; Chen, C. H. Numerical simulations of self-propelled jumping upon drop coalescence on non- wetting surfaces. J. Fluid Mech. 2014, 752, 39–65.

    Article  CAS  Google Scholar 

  27. Malvadkar, N. A.; Hancock, M. J.; Sekeroglu, K.; Dressick, W. J.; Demirel, M. C. An engineered anisotropic nanofilm with unidirectional wetting properties. Nat. Mater. 2010, 9, 1023–1028.

    Article  CAS  Google Scholar 

  28. Lai, Y. K.; Gao, X. F.; Zhuang, H. F.; Huang, J. Y.; Lin, C. J.; Jiang, L. Designing superhydrophobic porous nanostructures with tunable water adhesion. Adv. Mater. 2009, 21, 3799–3803.

    Article  CAS  Google Scholar 

  29. Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

    Article  CAS  Google Scholar 

  30. Li, Y. J.; Zhang, H. C.; Han, N. N.; Kuang, Y.; Liu, J. F.; Liu, W.; Duan, H. H.; Sun, X. M. Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Res. 2019, 12, 177–182.

    Article  CAS  Google Scholar 

  31. Lou, X. D.; Huang, Y.; Yang, X.; Zhu, H.; Heng, L. P.; Xia, F. External stimuli responsive liquid-infused surfaces switching between slippery and nonslippery states: Fabrications and applications. Adv. Funct. Mater. 2020, 30, 1901130.

    Article  CAS  Google Scholar 

  32. Zhu, H.; Huang, Y.; Lou, X.; Xia F. Beetle-inspired wettable materials: From fabrications to applications. Mater. Today Nano 2019, 6, 100034.

    Article  Google Scholar 

  33. Zhu, H.; Huang, Y.; Xia, F. Environmentally friendly superhydrophobic osmanthus flowers for oil spill cleanup. Appl. Mater. Today 2020, 19, 100607.

    Article  Google Scholar 

  34. Cai, Z.; Zhang, Y. S.; Zhao, Y. X.; Wu, Y. S.; Xu, W. W.; Wen, X. M.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H. L. et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2019, 12, 345–349.

    Article  CAS  Google Scholar 

  35. Li, Y. A.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

    Article  CAS  Google Scholar 

  36. Gwon, H. J.; Park, Y.; Moon, C. W.; Nahm, S.; Yoon, S. J.; Kim, S. Y.; Jang, H. W. Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells. Nano Res. 2014, 7, 670–678.

    Article  CAS  Google Scholar 

  37. Su, B.; Wang, S. T.; Song, Y. L.; Jiang, L. A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2011, 4, 266–273.

    Article  Google Scholar 

  38. Ma, J.; Wen, L. P.; Dong, Z. C.; Zhang, T.; Wang, S. T.; Jiang, L. Aligned silicon nanowires with fine-tunable tilting angles by metal- assisted chemical etching on off-cut wafers. Phys. Status Solidi RRL 2013, 7, 655–658.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (No. 2017YFB0406100), the National Natural Science Foundation of China (No. 21573276), and Natural Science Foundation of Jiangsu Province (Nos. BK20170007 and BK20170425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Gao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wu, F., Yu, F. et al. Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling. Nano Res. 14, 1429–1434 (2021). https://doi.org/10.1007/s12274-020-3196-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3196-8

Keywords

Navigation