Skip to main content
Log in

Redox-active nanoparticles for inflammatory bowel disease

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Homeostasis of gut microbiota is extremely essential for maintaining nutrient metabolism and regulating immunological function. The increasing evidence suggests that inflammatory bowel disease (IBD) is strongly associated with dysregulation of gut microbiota. During activated inflammation, excessive reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced by inflammatory cells play a detrimental role in regulating IBD and gut microbiota. ROS/RNS cause damage to the surrounding tissues, including nutrient absorption disorders, intestinal dysmotility and barrier dysfunction. Meanwhile, ROS/RNS provide terminal electron receptors for anaerobic respiration and support the bloom of facultative anaerobes, eventually causing gut microbiota dysbiosis. Redox-active nanoparticles (NPs) with catalytic properties or enzyme-like activities can effectively scavenge ROS/RNS, and selectively target inflamed sites via ultrasmall size-mediated enhanced permeation and retention (EPR) effect, showing great potential to regulate IBD and maintain the homeostasis of gut microbiota. In addition, the widespread application of NPs in commercial products has increased their accumulation in healthy organisms, and the biological effects on normal microbiota resulting from long-term exposure of NPs to gastrointestinal tract also need attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hooper, L. V.; Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 2010, 10, 159–169.

    Article  CAS  Google Scholar 

  2. Kamada, N.; Seo, S. U.; Chen, G. Y.; Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13, 321–335.

    Article  CAS  Google Scholar 

  3. Hamer, H. M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F. J.; Brummer, R. J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008, 27, 104–119.

    Article  CAS  Google Scholar 

  4. Trompette, A.; Gollwitzer, E. S.; Yadava, K.; Sichelstiel, A. K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L. P.; Harris, N. L. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20, 159–166.

    Article  CAS  Google Scholar 

  5. Gill, N.; Wlodarska, M.; Finlay, B. B. The future of mucosal immunology: Studying an integrated system-wide organ. Nat. Immunol. 2010, 11, 558–560.

    Article  CAS  Google Scholar 

  6. Cani, P. D. Gut microbiota-at the intersection of everything? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 321–322.

    Article  Google Scholar 

  7. Schroeder, B. O.; Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016, 22, 1079–1089.

    Article  CAS  Google Scholar 

  8. Fujimura, K. E.; Sitarik, A. R.; Havstad, S.; Lin, D. L.; Levan, S.; Fadrosh, D.; Panzer, A. R.; LaMere, B.; Rackaityte, E.; Lukacs, N. W. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 2016, 22, 1187–1191.

    Article  CAS  Google Scholar 

  9. Dinan, T. G.; Cryan, J. F. Gut-brain axis in 2016: Brain-gut-microbiota axis-mood, metabolism and behaviour. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 69–70.

    Article  CAS  Google Scholar 

  10. Attar, N. Microbiome: Good for the gut, good for the brain. Nat. Rev. Microbiol. 2016, 14, 269.

    Google Scholar 

  11. Benakis, C.; Brea, D.; Caballero, S.; Faraco, G.; Moore, J.; Murphy, M.; Sita, G.; Racchumi, G.; Ling, L. L.; Pamer, E. G. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 2016, 22, 516–523.

    Article  CAS  Google Scholar 

  12. Liu, Z. G.; Dai, X. S.; Zhang, H. B.; Shi, R. J.; Hui, Y.; Jin, X.; Zhang, W. T.; Wang, L. F.; Wang, Q. X.; Wang, D. N. et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat. Commun. 2020, 11, 855.

    Article  CAS  Google Scholar 

  13. Wu, Y. W.; Briley, K.; Tao, X. F. Nanoparticle-based imaging of inflammatory bowel disease. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2016, 8, 300–315.

    Google Scholar 

  14. Shivashankar, R.; Lichtenstein, G. R. Mimics of inflammatory bowel disease. Inflamm. Bowel Dis. 2018, 24, 2315–2321.

    Article  Google Scholar 

  15. Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 205–217.

    Article  Google Scholar 

  16. De Souza, H. S. P.; Fiocchi, C.; Iliopoulos, D. The IBD interactome: An integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 739–750.

    Article  Google Scholar 

  17. Ananthakrishnan, A. N.; Bernstein, C. N.; Iliopoulos, D.; Macpherson, A.; Neurath, M. F.; Ali, R. A. R.; Vavricka, S. R.; Fiocchi, C. Environmental triggers in IBD: A review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 39–49.

    Article  Google Scholar 

  18. Cleynen, I.; Vermeire, S. The genetic architecture of inflammatory bowel disease: Past, present and future. Curr. Opin. Gastroenterol. 2015, 31, 456–463.

    CAS  Google Scholar 

  19. McGovern, D. P. B.; Kugathasan, S.; Cho, J. H. Genetics of inflammatory bowel diseases. Gastroenterology 2015, 149, 1163–1176.

    Article  CAS  Google Scholar 

  20. Abreu, M. T.; Taylor, K. D.; Lin, Y. C.; Hang, T.; Gaiennie, J.; Landers, C. J.; Vasiliauskas, E. A.; Kam, L. Y.; Rojany, M.; Papadakis, K. A. et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 2002, 123, 679–688.

    Article  CAS  Google Scholar 

  21. Lee, S. H.; Kwon, J. E.; Cho, M. L. Immunological pathogenesis of inflammatory bowel disease. Intest. Res. 2018, 16, 26–42.

    Article  Google Scholar 

  22. Sommer, F.; Rühlemann, M. C.; Bang, C.; Höppner, M.; Rehman, A.; Kaleta, C.; Schmitt-Kopplin, P.; Dempfle, A.; Weidinger, S.; Ellinghaus, E. et al. Microbiomarkers in inflammatory bowel diseases: Caveats come with caviar. Gut 2017, 66, 1734–1738.

    Article  CAS  Google Scholar 

  23. Stojanov, S.; Berlec, A.; Štrukelj, B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020, 8, 1715.

    Article  CAS  Google Scholar 

  24. Mukhopadhya, I.; Hansen, R.; El-Omar, E. M.; Hold, G. L. IBD-what role do Proteobacteria play? Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 219–230.

    Article  CAS  Google Scholar 

  25. Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L. G.; Gratadoux, J. J.; Blugeon, S.; Bridonneau, C.; Furet, J. P.; Corthier, G. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736.

    Article  CAS  Google Scholar 

  26. Sun, M. M.; Wu, W.; Liu, Z. J.; Cong, Y. Z. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 2017, 52, 1–8.

    Article  CAS  Google Scholar 

  27. Knaus, U. G. ROS signaling in complex systems: The gut. In Oxidative Stress. Sies, H., Ed.; Elsevier: New York, 2020; pp 695–712.

    Chapter  Google Scholar 

  28. Albenberg, L.; Esipova, T. V.; Judge, C. P.; Bittinger, K.; Chen, J.; Laughlin, A.; Grunberg, S.; Baldassano, R. N.; Lewis, J. D.; Li, H. Z. et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014, 147, 1055–1063.E8.

    Article  Google Scholar 

  29. Campbell, E. L.; Colgan, S. P. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 106–120.

    Article  Google Scholar 

  30. Tian, T.; Wang, Z. L.; Zhang, J. H. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid. Med. Cell. Longev. 2017, 2017, 4535194.

    Article  Google Scholar 

  31. Lopez, C. A.; Miller, B. M.; Rivera-Chávez, F.; Velazquez, E. M.; Byndloss, M. X.; Chávez-Arroyo, A.; Lokken, K. L.; Tsolis, R. M.; Winter, S. E.; Bäumler, A. J. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 2016, 353, 1249–1253.

    Article  CAS  Google Scholar 

  32. Winter, S. E.; Lopez, C. A.; Bäumler, A. J. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep. 2013, 14, 319–327.

    Article  CAS  Google Scholar 

  33. Fischbach, M. A.; Sonnenburg, J. L. Eating for two: How metabolism establishes interspecies interactions in the gut. Cell Host Microbe 2011, 10, 336–347.

    Article  CAS  Google Scholar 

  34. Winter, S. E.; Thiennimitr, P.; Winter, M. G.; Butler, B. P.; Huseby, D. L.; Crawford, R. W.; Russell, J. M.; Bevins, C. L.; Adams, L. G.; Tsolis, R. M. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 2010, 467, 426–429.

    Article  CAS  Google Scholar 

  35. Ni, J.; Wu, G. D.; Albenberg, L.; Tomov, V. T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 573–584.

    Article  Google Scholar 

  36. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechonol. 2015, 33, 941–951.

    Article  CAS  Google Scholar 

  37. Chao, Y.; Chen, Q.; Liu, Z. Smart injectable hydrogels for cancer immunotherapy. Adv. Funct. Mater. 2020, 30, 1902785.

    Article  CAS  Google Scholar 

  38. Mu, X. Y.; Wang, J. Y.; Li, Y. H.; Xu, F. J.; Long, W.; Ouyang, L. F.; Liu, H. L.; Jing, Y. Q.; Wang, J. Y.; Dai, H. T. et al. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano 2019, 13, 1870–1884.

    CAS  Google Scholar 

  39. Hou, X. C.; Zhang, X. F.; Zhao, W. Y.; Zeng, C. X.; Deng, B. B.; McComb, D. W.; Du, S.; Zhang, C. X.; Li, W. Q.; Dong, Y. Z. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 2020, 15, 41–46.

    Article  CAS  Google Scholar 

  40. Wang, J. Y.; Cui, X. J.; Li, H. B.; Xiao, J. P.; Yang, J.; Mu, X. Y.; Liu, H. X.; Sun, Y. M.; Xue, X. H.; Liu, C. L. et al. Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields. Nano Res. 2018, 11, 2821–2835.

    Article  CAS  Google Scholar 

  41. Xing, R. J.; Bhirde, A. A.; Wang, S. J.; Sun, X. L.; Liu, G.; Hou, Y. L.; Chen, X. Y. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013, 6, 1–9.

    Article  CAS  Google Scholar 

  42. Liu, H. L.; Hong, G. S.; Luo, Z. T.; Chen, J. C.; Chang, J. L.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L. L. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 2019, 31, 1901015.

    Article  CAS  Google Scholar 

  43. Wang, Y. Q.; Li, L. L.; Zhao, W. B.; Dou, Y.; An, H. J.; Tao, H.; Xu, X. Q.; Jia, Y.; Lu, S.; Zhang, J. X. et al. Targeted therapy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity. ACS Nano 2018, 12, 8943–8960.

    Article  CAS  Google Scholar 

  44. Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.

    Article  CAS  Google Scholar 

  45. Zhang, S. F.; Cho, W. J.; Jin, A. T.; Kok, L. Y.; Shi, Y. H.; Heller, D. E.; Lee, Y. A. L.; Zhou, Y. X.; Xie, X.; Korzenik, J. R. et al. Heparin-coated albumin nanoparticles for drug combination in targeting inflamed intestine. Adv. Healthc. Mater. 2020, 9, 2000536.

    Article  CAS  Google Scholar 

  46. Lamprecht, A. Selective nanoparticle adhesion can enhance colitis therapy. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 311–312.

    Article  CAS  Google Scholar 

  47. Lamprecht, A. Nanomedicines in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 195–204.

    Article  CAS  Google Scholar 

  48. Xiao, B.; Laroui, H.; Viennois, E.; Ayyadurai, S.; Charania, M. A.; Zhang, Y. C.; Zhang, Z.; Baker, M. T.; Zhang, B. Y.; Gewirtz, A. T. et al. Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice. Gastroenterology 2014, 146, 1289–1300.E19.

    Article  CAS  Google Scholar 

  49. Xiao, B.; Laroui, H.; Ayyadurai, S.; Viennois, E.; Charania, M. A.; Zhang, Y. C.; Merlin, D. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials 2013, 34, 7471–7482.

    Article  CAS  Google Scholar 

  50. Hu, B.; Yu, S. J.; Shi, C.; Gu, J.; Shao, Y.; Chen, Q.; Li, Y. Q.; Mezzenga, R. Amyloid-polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis. ACS Nano 2020, 14, 2760–2776.

    Article  CAS  Google Scholar 

  51. Qiu, K. Y.; Durham, P. G.; Anselmo, A. C. Inorganic nanoparticles and the microbiome. Nano Res. 2018, 11, 4936–4954.

    Article  CAS  Google Scholar 

  52. Hirst, S. M.; Karakoti, A. S.; Tyler, R. D.; Sriranganathan, N.; Seal, S.; Reilly, C. M. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848–2856.

    Article  CAS  Google Scholar 

  53. Zhen, W. Y.; Liu, Y.; Lin, L.; Bai, J.; Jia, X. D.; Tian, H. Y.; Jiang, X. BSA-IrO2: Catalase-like nanoparticles with high photothermal conversion efficiency and a high X-ray absorption coefficient for anti-inflammation and antitumor theranostics. Angew. Chem., Int. Ed. 2018, 130, 10466–10470.

    Article  Google Scholar 

  54. Sharpe, E.; Andreescu, D.; Andreescu, S. Artificial nanoparticle antioxidants. In Oxidative Stress: Diagnostics, Prevention, and Therapy. Andreescu, S.; Hepel, M., Eds.; ACS Publications: New York, 2011; pp 235–253.

    Chapter  Google Scholar 

  55. Tirosh, B.; Khatib, N.; Barenholz, Y.; Nissan, A.; Rubinstein, A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharm. 2009, 6, 1083–1091.

    Article  CAS  Google Scholar 

  56. Maurer-Jones, M. A.; Lin, Y. S.; Haynes, C. L. Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 2010, 4, 3363–3373.

    Article  CAS  Google Scholar 

  57. Kang, T.; Kim, Y. G.; Kim, D.; Hyeon, T. Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications. Coord. Chem. Rev. 2020, 403, 213092.

    Article  CAS  Google Scholar 

  58. Frederickson, C. J.; Koh, J. Y.; Bush, A. I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005, 6, 449–462.

    Article  CAS  Google Scholar 

  59. Sensi, S. L.; Paoletti, P.; Bush, A. I.; Sekler, I. Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 2009, 10, 780–791.

    Article  CAS  Google Scholar 

  60. Seo, H. M.; Kim, Y. H.; Lee, J. H.; Kim, J. S.; Park, Y. M.; Lee, J. Y. Serum zinc status and its association with allergic sensitization: The fifth Korea national health and nutrition examination survey. Sci. Rep. 2017, 7, 12637.

    Article  CAS  Google Scholar 

  61. Eide, D. J. The oxidative stress of zinc deficiency. Metallomics 2011, 3, 1124–1129.

    Article  CAS  Google Scholar 

  62. Eide, D. J. Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 2009, 284, 18565–18569.

    Article  CAS  Google Scholar 

  63. Oteiza, P. I. Zinc and the modulation of redox homeostasis. Free Radic. Biol. Med. 2012, 53, 1748–1759.

    Article  CAS  Google Scholar 

  64. Li, J. Q.; Chen, H. Q.; Wang, B.; Cai, C. X.; Yang, X.; Chai, Z. F.; Feng, W. Y. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci. Rep. 2017, 7, 43126.

    Article  CAS  Google Scholar 

  65. AbouZaid, O. A. R.; El-Sogheer, H. M.; El-Sonbaty, S. M. Evaluation of protective and therapeutic role of zinc oxide nanoparticles and aloin on dextran sulfate-induced ulcerative colitis in rats. Benha Vet. Med. J. 2016, 30, 208–218.

    Article  Google Scholar 

  66. Gubernatorova, E. O.; Liu, X. B.; Othman, A.; Muraoka, W. T.; Koroleva, E. P.; Andreescu, S.; Tumanov, A. V. Europium-doped cerium oxide nanoparticles limit reactive oxygen species formation and ameliorate intestinal ischemia-reperfusion injury. Adv. Healthc. Mater. 2017, 6, 1700176.

    Article  CAS  Google Scholar 

  67. Hussein, R. M.; Saleh, H. Promising therapeutic effect of gold nanoparticles against dinitrobenzene sulfonic acid-induced colitis in rats. Nanomedicine 2018, 13, 1657–1679.

    Article  CAS  Google Scholar 

  68. Abdelmegid, A. M.; Abdo, F. K.; Ahmed, F. E.; Kattaia, A. A. A. Therapeutic effect of gold nanoparticles on DSS-induced ulcerative colitis in mice with reference to interleukin-17 expression. Sci. Rep. 2019, 9, 10176.

    Article  CAS  Google Scholar 

  69. Zhu, S. Q.; Jiang, X. M.; Boudreau, M. D.; Feng, G. X.; Miao, Y.; Dong, S. Y.; Wu, H. H.; Zeng, M. Y.; Yin, J. J. Orally administered gold nanoparticles protect against colitis by attenuating Toll-like receptor 4- and reactive oxygen/nitrogen species-mediated inflammatory responses but could induce gut dysbiosis in mice. J. Nanobiotechnol. 2018, 16, 86.

    Article  CAS  Google Scholar 

  70. Miao, Z. H.; Jiang, S. S.; Ding, M. L.; Sun, S. Y.; Ma, Y.; Younis, M. R.; He, G.; Wang, J. G.; Lin, J.; Cao, Z. et al. Ultrasmall rhodium nanozyme with RONS scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases. Nano Lett. 2020, 20, 3079–3089.

    Article  CAS  Google Scholar 

  71. Long, W.; Mu, X. Y.; Wang, J. Y.; Xu, F. J.; Yang, J.; Wang, J. Y.; Sun, S.; Chen, J.; Sun, Y. M.; Wang, H. et al. Dislocation engineered PtPdMo alloy with enhanced antioxidant activity for intestinal injury. Front. Chem. 2019, 7, 784.

    Article  CAS  Google Scholar 

  72. Fan, L.; Sun, P. Z.; Huang, Y. L.; Xu, Z. L.; Lu, X. M.; Xi, J. Q.; Han, J.; Guo, R. One-pot synthesis of Fe/N-doped hollow carbon nanospheres with multienzyme mimic activities against inflammation. ACS Appl. Bio Mater. 2020, 3, 1147–1157.

    Article  CAS  Google Scholar 

  73. Liu, Y. F.; Cheng, Y.; Zhang, H.; Zhou, M.; Yu, Y. J.; Lin, S. C.; Jiang, B.; Zhao, X. Z.; Miao, L. Y.; Wei, C. W. et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 2020, 6, eabb2695.

    Article  CAS  Google Scholar 

  74. Mishra, P. K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today 2017, 22, 1825–1834.

    Article  CAS  Google Scholar 

  75. Bao, Q. Q.; Hu, P.; Xu, Y. Y.; Cheng, T. S.; Wei, C. Y.; Pan, L. M.; Shi, J. L. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 2018, 12, 6794–6805.

    Article  CAS  Google Scholar 

  76. Kwon, H. J.; Cha, M. Y.; Kim, D.; Kim, D. K.; Soh, M.; Shin, K.; Hyeon, T.; Mook-Jung, I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 2016, 10, 2860–2870.

    Article  CAS  Google Scholar 

  77. Colon, J.; Herrera, L.; Smith, J.; Patil, S.; Komanski, C.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 2009, 5, 225–231.

    Article  CAS  Google Scholar 

  78. Nelson, B. C.; Johnson, M. E.; Walker, M. L.; Riley, K. R.; Sims, C. M. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 2016, 5, 15.

    Article  CAS  Google Scholar 

  79. Colon, J.; Hsieh, N.; Ferguson, A.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 2010, 6, 698–705.

    Article  CAS  Google Scholar 

  80. Naha, P. C.; Hsu, J. C.; Kim, J.; Shah, S.; Bouché, M.; Si-Mohamed, S.; Rosario-Berrios, D. N.; Douek, P.; Hajfathalian, M.; Yasini, P. et al. Dextran-coated cerium oxide nanoparticles: A computed tomography contrast agent for imaging the gastrointestinal tract and inflammatory bowel disease. ACS Nano 2020, 14, 10187–10197.

    Article  CAS  Google Scholar 

  81. Zhang, X. D.; Luo, Z. T.; Chen, J.; Shen, X.; Song, S. S.; Sun, Y. M.; Fan, S. J.; Fan, F. Y.; Leong, D. T.; Xie, J. P. Ultrasmall Au(10−12)(SG)(10−12) nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014, 26, 4565–4568.

    Article  CAS  Google Scholar 

  82. Zhang, X. D.; Chen, J.; Luo, Z. T.; Wu, D.; Shen, X.; Song, S. S.; Sun, Y. M.; Liu, P. X.; Zhao, J.; Huo, S. D. et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthc. Mater. 2014, 3, 133–141.

    Article  CAS  Google Scholar 

  83. Yao, M. F.; He, L. L.; McClements, D. J.; Xiao, H. Uptake of gold nanoparticles by intestinal epithelial cells: Impact of particle size on their absorption, accumulation, and toxicity. J. Agric. Food Chem. 2015, 63, 8044–8049.

    Article  CAS  Google Scholar 

  84. Kolls, J. K.; Linden, A. Interleukin-17 family members and inflammation. Immunity 2004, 21, 467–476.

    Article  CAS  Google Scholar 

  85. Miljkovic, D.; Cvetkovic, I.; Momcilovic, M.; Maksimovic-Ivanic, D.; Stosic-Grujicic, S.; Trajkovic, V. Interleukin-17 stimulates inducible nitric oxide synthase-dependent toxicity in mouse beta cells. Cell. Mol. Life Sci. 2005, 62, 2658–2668.

    Article  CAS  Google Scholar 

  86. Morampudi, V.; Dalwadi, U.; Bhinder, G.; Sham, H. P.; Gill, S. K.; Chan, J.; Bergstrom, K. S.; Huang, T.; Ma, C.; Jacobson, K. et al. The goblet cell-derived mediator RELM-β drives spontaneous colitis in Muc2-deficient mice by promoting commensal microbial dysbiosis. Mucosal Immunol. 2016, 9, 1218–1233.

    Article  CAS  Google Scholar 

  87. Parikh, K.; Antanaviciute, A.; Fawkner-Corbett, D.; Jagielowicz, M.; Aulicino, A.; Lagerholm, C.; Davis, S.; Kinchen, J.; Chen, H. H.; Alham, N. K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 2019, 567, 49–55.

    Article  CAS  Google Scholar 

  88. Xie, S. F.; Liu, X. Y.; Xia, Y. N. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Res. 2015, 8, 82–96.

    Article  CAS  Google Scholar 

  89. Huang, X. Q.; Zhang, H. H.; Guo, C. Y.; Zhou, Z. Y.; Zheng, N. F. Simplifying the creation of hollow metallic nanostructures: One-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew. Chem., Int. Ed. 2009, 48, 4808–4812.

    Article  CAS  Google Scholar 

  90. Wang, J. Y.; Mu, X. Y.; Li, Y. H.; Xu, F. J.; Long, W.; Yang, J.; Bian, P. X.; Chen, J. C.; Ouyang, L. F.; Liu, H. L. et al. Hollow PtPdRh nanocubes with enhanced catalytic activities for in vivo clearance of radiation-induced ROS via surface-mediated bond breaking. Small 2018, 14, 1703736.

    Article  CAS  Google Scholar 

  91. Ma, N.; Li, Y.; Xu, H. P.; Wang, Z. Q.; Zhang, X. Dual redox responsive assemblies formed from diselenide block copolymers. J. Am. Chem. Soc. 2010, 132, 442–443.

    Article  CAS  Google Scholar 

  92. Zhang, W.; Lin, W. H.; Zheng, X. H.; He, S. S.; Xie, Z. G. Comparing effects of redox sensitivity of organic nanoparticles to photodynamic activity. Chem. Mater. 2017, 29, 1856–1863.

    Article  CAS  Google Scholar 

  93. Pu, H. L.; Chiang, W. L.; Maiti, B.; Liao, Z. X.; Ho, Y. C.; Shim, M. S.; Chuang, E. Y.; Xia, Y. N.; Sung, H. W. Nanoparticles with dual responses to oxidative stress and reduced pH for drug release and anti-inflammatory applications. ACS Nano 2014, 8, 1213–1221.

    Article  CAS  Google Scholar 

  94. Zhang, W.; Lin, W. H.; Pei, Q.; Hu, X. L.; Xie, Z. G.; Jing, X. B. Redox-hypersensitive organic nanoparticles for selective treatment of cancer cells. Chem. Mater. 2016, 28, 4440–4446.

    Article  CAS  Google Scholar 

  95. Khare, V.; Krnjic, A.; Frick, A.; Gmainer, C.; Asboth, M.; Jimenez, K.; Lang, M.; Baumgartner, M.; Evstatiev, R.; Gasche, C. Mesalamine and azathioprine modulate junctional complexes and restore epithelial barrier function in intestinal inflammation. Sci. Rep. 2019, 9, 2842.

    Article  CAS  Google Scholar 

  96. Gassull, M. A.; Cabré, E. Conventional medical management of Crohn’s disease: Sulfasalazine. In Crohn’s Disease and Ulcerative Colitis. Baumgart, D. C., Eds.; Springer: Berlin, 2017; pp 311–314.

    Chapter  Google Scholar 

  97. Shahdadi Sardo, H.; Saremnejad, F.; Bagheri, S.; Akhgari, A.; Afrasiabi Garekani, H.; Sadeghi, F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int. J. Pharmaceut. 2019, 558, 367–379.

    Article  CAS  Google Scholar 

  98. Chen, Z. J.; Vong, C. T.; Gao, C. F.; Chen, S. Y.; Wu, X.; Wang, S. P.; Wang, Y. T. Bilirubin nanomedicines for the treatment of reactive oxygen species (ROS)-mediated diseases. Mol. Pharm. 2020, 17, 2260–2274.

    Article  CAS  Google Scholar 

  99. Stocker, R.; Yamamoto, Y.; McDonagh, A. F.; Glazer, A. N.; Ames, B. N. Bilirubin is an antioxidant of possible physiological importance. Science 1987, 235, 1043–1046.

    Article  CAS  Google Scholar 

  100. Lee, D. Y.; Kim, J. Y.; Lee, Y.; Lee, S.; Miao, W. J.; Kim, H. S.; Min, J. J.; Jon, S. Black pigment gallstone inspired platinum-chelated bilirubin nanoparticles for combined photoacoustic imaging and photothermal therapy of cancers. Angew. Chem., Int. Ed. 2017, 129, 13872–13876.

    Article  Google Scholar 

  101. Lee, Y.; Lee, S.; Lee, D. Y.; Yu, B.; Miao, W. J.; Jon, S. Multistimuli-responsive bilirubin nanoparticles for anticancer therapy. Angew. Chem., Int. Ed. 2016, 55, 10676–10680.

    Article  CAS  Google Scholar 

  102. Lee, Y.; Lee, S.; Jon, S. Biotinylated bilirubin nanoparticles as a tumor microenvironment — responsive drug delivery system for targeted cancer therapy. Adv. Sci. 2018, 5, 1800017.

    Article  CAS  Google Scholar 

  103. Shan, L. L.; Fan, W. P.; Wang, W. W.; Tang, W.; Yang, Z.; Wang, Z. T.; Liu, Y. J.; Shen, Z. Y.; Dai, Y. L.; Cheng, S. Y. et al. Organosilica-based hollow mesoporous bilirubin nanoparticles for antioxidation-activated self-protection and tumor-specific deoxygenation-driven synergistic therapy. ACS Nano 2019, 13, 8903–8916.

    Article  CAS  Google Scholar 

  104. Yang, X. T.; Hu, C.; Tong, F.; Liu, R.; Zhou, Y.; Qin, L.; Ouyang, L.; Gao, H. L. Tumor microenvironment-responsive dual drug dimer-loaded PEGylated bilirubin nanoparticles for improved drug delivery and enhanced immune-chemotherapy of breast cancer. Adv. Funct. Mater. 2019, 29, 1901896.

    Article  CAS  Google Scholar 

  105. Kim, D. E.; Lee, Y.; Kim, M.; Lee, S.; Jon, S.; Lee, S. H. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma. Biomaterials 2017, 140, 37–44.

    Article  CAS  Google Scholar 

  106. Kim, J. Y.; Lee, D. Y.; Kang, S.; Miao, W. J.; Kim, H.; Lee, Y.; Jon, S. Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury. Biomaterials 2017, 133, 1–10.

    Article  CAS  Google Scholar 

  107. Zheng, L.; Riehl, T. E.; Stenson, W. F. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology 2009, 137, 2041–2051.

    Article  CAS  Google Scholar 

  108. Lee, Y.; Sugihara, K.; Gillilland, M. G. III.; Jon, S.; Kamada, N.; Moon, J. J. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 2020, 19, 118–126.

    Article  CAS  Google Scholar 

  109. Citi, S. Intestinal barriers protect against disease. Science 2018, 359, 1097–1098.

    Article  CAS  Google Scholar 

  110. Lee, Y.; Kim, H.; Kang, S.; Lee, J.; Park, J.; Jon, S. Bilirubin nanoparticles as a nanomedicine for anti-inflammation therapy. Angew. Chem., Int. Ed. 2016, 128, 7586–7589.

    Article  Google Scholar 

  111. Vong, L. B.; Tomita, T.; Yoshitomi, T.; Matsui, H.; Nagasaki, Y. An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Gastroenterology 2012, 143, 1027–1036.E3.

    Article  CAS  Google Scholar 

  112. Chan, H. C.; Jung, W.; Keum, H.; Kim, T. W.; Jon, S. Nanoparticles derived from the natural antioxidant rosmarinic acid ameliorate acute inflammatory bowel disease. ACS Nano 2020, 14, 6887–6896.

    Article  CAS  Google Scholar 

  113. Zhao, J. L.; Cai, X. J.; Gao, W.; Zhang, L. L.; Zou, D. W.; Zheng, Y. Y.; Li, Z. S.; Chen, H. R. Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl. Mater. Interfaces 2018, 10, 26108–26117.

    Article  CAS  Google Scholar 

  114. Zhao, J. L.; Gao, W.; Cai, X. J.; Xu, J. J.; Zou, D. W.; Li, Z. S.; Hu, B.; Zheng, Y. Y. Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics 2019, 9, 2843–2855.

    Article  CAS  Google Scholar 

  115. Gou, S. Q.; Huang, Y. M.; Wan, Y.; Ma, Y.; Zhou, X.; Tong, X. L.; Huang, J.; Kang, Y. J.; Pan, G. Q.; Dai, F. Y. et al. Multibioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials 2019, 212, 39–54.

    Article  CAS  Google Scholar 

  116. Li, C. W.; Zhao, Y.; Cheng, J.; Guo, J. W.; Zhang, Q. X.; Zhang, X. J.; Ren, J.; Wang, F. C.; Huang, J.; Hu, H. Y. et al. A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota. Adv. Sci. 2019, 6, 1900610.

    Article  CAS  Google Scholar 

  117. Xue, F. C.; Wang, Y. Q.; Zhang, Q. X.; Han, S. L.; Zhang, F. Z.; Jin, T. T.; Li, C. W.; Hu, H. Y.; Zhang, J. X. Self-assembly of affinity-controlled nanoparticles via host-guest interactions for drug delivery. Nanoscale 2018, 10, 12364–12377.

    Article  CAS  Google Scholar 

  118. Zhang, Q. X.; Tao, H.; Lin, Y. Y.; Hu, Y.; An, H. J.; Zhang, D. L.; Feng, S. B.; Hu, H. Y.; Wang, R. B.; Li, X. H. et al. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials 2016, 105, 206–221.

    Article  CAS  Google Scholar 

  119. Li, S. S.; Xie, A. Q.; Li, H.; Zou, X.; Zhang, Q. X. A self-assembled, ROS-responsive Janus-prodrug for targeted therapy of inflammatory bowel disease. J. Control. Release 2019, 316, 66–78.

    Article  CAS  Google Scholar 

  120. Yoshitomi, T.; Nagasaki, Y. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Adv. Healthc. Mater. 2014, 3, 1149–1161.

    Article  CAS  Google Scholar 

  121. Li, J. C.; Zhang, J.; Chen, Y.; Kawazoe, N.; Chen, G. P. TEMPO-conjugated gold nanoparticles for reactive oxygen species scavenging and regulation of stem cell differentiation. ACS Appl. Mater. Interfaces 2017, 9, 35683–35692.

    Article  CAS  Google Scholar 

  122. Vong, L. B.; Kobayashi, M.; Nagasaki, Y. Evaluation of the toxicity and antioxidant activity of redox nanoparticles in zebrafish (Danio rerio) embryos. Mol. Pharm. 2016, 13, 3091–3097.

    Article  CAS  Google Scholar 

  123. Yoshitomi, T.; Nagasaki, Y. Nitroxyl radical-containing nanoparticles for novel nanomedicine against oxidative stress injury. Nanomedicine 2011, 6, 509–618.

    Article  CAS  Google Scholar 

  124. Feliciano, C. P.; Tsuboi, K.; Suzuki, K.; Kimura, H.; Nagasaki, Y. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials 2017, 129, 68–82.

    Article  CAS  Google Scholar 

  125. Vong, L. B.; Mo, J.; Abrahamsson, B.; Nagasaki, Y. Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose-response efficacy. J. Control. Release 2015, 210, 19–25.

    Article  CAS  Google Scholar 

  126. Vong, L. B.; Yoshitomi, T.; Morikawa, K.; Saito, S.; Matsui, H.; Nagasaki, Y. Oral nanotherapeutics: Effect of redox nanoparticle on microflora in mice with dextran sodium sulfate-induced colitis. J. Gastroenterol. 2014, 49, 806–813.

    Article  CAS  Google Scholar 

  127. Vong, L. B.; Yoshitomi, T.; Matsui, H.; Nagasaki, Y. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials 2015, 55, 54–63.

    Article  CAS  Google Scholar 

  128. Yoshitomi, T.; Nagasaki, Y. Development of silica-containing redox nanoparticles for medical applications. Biomater. Sci. 2015, 3, 810–815.

    Article  CAS  Google Scholar 

  129. Vong, L. B.; Nagasaki, Y. Development of redox nanomedicine for gastrointestinal complications via oral administration route. In Advances in Bioinspired and Biomedical Materials. Yoshihiro, I.; Si, C. X.; Inn-Kyu, K., Eds.; ACS Publications: New York, 2017; pp 47–67.

    Chapter  Google Scholar 

  130. Burri, E.; Beglinger, C. Faecal calprotectin testing-the need for better standardization. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 583–584.

    Article  Google Scholar 

  131. Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem., Int. Ed. 2011, 50, 586–621.

    Article  CAS  Google Scholar 

  132. Sileika, T. S.; Barrett, D. G.; Zhang, R.; Lau, K. H. A.; Messersmith, P. B. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew. Chem., Int. Ed. 2013, 125, 10966–10970.

    Article  Google Scholar 

  133. Singh, R.; Chandrashekharappa, S.; Bodduluri, S. R.; Baby, B. V.; Hegde, B.; Kotla, N. G.; Hiwale, A. A.; Saiyed, T.; Patel, P.; Vijay-Kumar, M. et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 2019, 10, 89.

    Article  CAS  Google Scholar 

  134. Han, Y. H.; Song, M. Y.; Gu, M.; Ren, D. Y.; Zhu, X. A.; Cao, X. Q.; Li, F.; Wang, W. C.; Cai, X. K.; Yuan, B. et al. Dietary intake of whole strawberry inhibited colonic inflammation in dextran-sulfate-sodium-treated mice via restoring immune homeostasis and alleviating gut microbiota dysbiosis. J. Agric. Food Chem. 2019, 67, 9168–9177.

    Article  CAS  Google Scholar 

  135. Chiou, Y. S.; Ma, N. J. L.; Sang, S. M.; Ho, C. T.; Wang, Y. J.; Pan, M. H. Peracetylated (−)-epigallocatechin-3-gallate (AcEGCG) potently suppresses dextran sulfate sodium-induced colitis and colon tumorigenesis in mice. J. Agric. Food Chem. 2012, 60, 3441–3451.

    Article  CAS  Google Scholar 

  136. Shutava, T. G.; Balkundi, S. S.; Vangala, P.; Steffan, J. J.; Bigelow, R. L.; Cardelli, J. A.; O’Neal, D. P.; Lvov, Y. M. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 2009, 3, 1877–1885.

    Article  CAS  Google Scholar 

  137. Hu, B.; Ma, F. G.; Yang, Y. K.; Xie, M. H.; Zhang, C.; Xu, Y.; Zeng, X. X. Antioxidant nanocomplexes for delivery of epigallocatechin-3-gallate. J. Agric. Food Chem. 2016, 64, 3422–3429.

    Article  CAS  Google Scholar 

  138. Wang, X. Y.; Yan, J. J.; Wang, L. Z.; Pan, D. H.; Yang, R. L.; Xu, Y. P.; Sheng, J.; Huang, Q. H.; Zhao, H. M.; Yang, M. Rational design of polyphenol-poloxamer nanovesicles for targeting inflammatory bowel disease therapy. Chem. Mater. 2018, 30, 4073–4080.

    Article  CAS  Google Scholar 

  139. Liang, K.; Chung, J. E.; Gao, S. J.; Yongvongsoontorn, N.; Kurisawa, M. Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly (ethylene glycol)-green tea catechin conjugate for cancer therapy. Adv. Mater. 2018, 30, 1706963.

    Article  CAS  Google Scholar 

  140. Gou, S. Q.; Chen, Q. B.; Liu, Y.; Zeng, L.; Song, H. L.; Xu, Z. G.; Kang, Y. J.; Li, C. M.; Xiao, B. Green fabrication of ovalbumin nanoparticles as natural polyphenol carriers for ulcerative colitis therapy. ACS Sustain. Chem. Eng. 2018, 6, 12658–12667.

    Article  CAS  Google Scholar 

  141. Zhang, W.; Hu, S. L.; Yin, J. J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.

    Article  CAS  Google Scholar 

  142. Zhang, K.; Tu, M. J.; Gao, W.; Cai, X. J.; Song, F. H.; Chen, Z.; Zhang, Q.; Wang, J.; Jin, C. T.; Shi, J. J. et al. Hollow prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 2019, 19, 2812–2823.

    Article  CAS  Google Scholar 

  143. Komkova, M. A.; Karyakina, E. E.; Karyakin, A. A. Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 2018, 140, 11302–11307.

    Article  CAS  Google Scholar 

  144. Vázquez-González, M.; Torrente-Rodríguez, R. M.; Kozell, A.; Liao, W. C.; Cecconello, A.; Campuzano, S.; Pingarrón, J. M.; Willner, I. Mimicking peroxidase activities with prussian blue nanoparticles and their cyanometalate structural analogues. Nano Lett. 2017, 17, 4958–4963.

    Article  CAS  Google Scholar 

  145. Gopinath, D.; Ahmed, M. R.; Gomathi, K.; Chitra, K.; Sehgal, P. K.; Jayakumar, R. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 2004, 25, 1911–1917.

    Article  CAS  Google Scholar 

  146. Singh, D. K.; Jagannathan, R.; Khandelwal, P.; Abraham, P. M.; Poddar, P. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: An experimental and density functional theory investigation. Nanoscale 2013, 5, 1882–1893.

    Article  CAS  Google Scholar 

  147. Manichanh, C.; Borruel, N.; Casellas, F.; Guarner, F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 599–608.

    Article  CAS  Google Scholar 

  148. Sommer, F.; Anderson, J. M.; Bharti, R.; Raes, J.; Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 2017, 15, 630–638.

    Article  CAS  Google Scholar 

  149. Zhou, J. C.; Zhang, X. W. Akkermansia muciniphila: A promising target for the therapy of metabolic syndrome and related diseases. Chin. J. Nat. Med. 2019, 17, 835–841.

    Google Scholar 

  150. Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T. A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450.

    Article  CAS  Google Scholar 

  151. Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G. H.; Yamasaki, S.; Saito, T.; Ohba, Y. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331, 337–341.

    Article  CAS  Google Scholar 

  152. Galdeano, C. M.; Perdigón, G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin. Vaccine Immunol. 2006, 13, 219–226.

    Article  CAS  Google Scholar 

  153. Madsen, K. L.; Doyle, J. S.; Jewell, L. D.; Tavernini, M. M.; Fedorak, R. N. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 1999, 116, 1107–1114.

    Article  CAS  Google Scholar 

  154. Zhu, W. H.; Winter, M. G.; Byndloss, M. X.; Spiga, L.; Duerkop, B. A.; Hughes, E. R.; Büttner, L.; de Lima Romão, E.; Behrendt, C. L.; Lopez, C. A. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 2018, 553, 208–211.

    Article  CAS  Google Scholar 

  155. Xia, Y. N. Nanomaterials at work in biomedical research. Nat. Mater. 2008, 7, 758–760.

    Article  CAS  Google Scholar 

  156. Morris, V. J. Emerging roles of engineered nanomaterials in the food industry. Trends Biotechnol. 2011, 29, 509–516.

    Article  CAS  Google Scholar 

  157. Miernicki, M.; Hofmann, T.; Eisenberger, I.; von der Kammer, F.; Praetorius, A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 2019, 14, 208–216.

    Article  CAS  Google Scholar 

  158. Karavolos, M.; Holban, A. Nanosized drug delivery systems in gastrointestinal targeting: Interactions with microbiota. Pharmaceuticals 2016, 9, 62.

    Article  CAS  Google Scholar 

  159. Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641.

    Article  CAS  Google Scholar 

  160. Van Den Brule, S.; Ambroise, J.; Lecloux, H.; Levard, C.; Soulas, R.; De Temmerman, P. J.; Palmai-Pallag, M.; Marbaix, E.; Lison, D. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part. Fibre Toxicol. 2016, 13, 38.

    Article  CAS  Google Scholar 

  161. Javurek, A. B.; Suresh, D.; Spollen, W. G.; Hart, M. L.; Hansen, S. A.; Ellersieck, M. R.; Bivens, N. J.; Givan, S. A.; Upendran, A.; Kannan, R. et al. Gut dysbiosis and neurobehavioral alterations in rats exposed to silver nanoparticles. Sci. Rep. 2017, 7, 2822.

    Article  CAS  Google Scholar 

  162. Mu, W.; Wang, Y.; Huang, C.; Fu, Y. J.; Li, J. Q.; Wang, H.; Jia, X. D.; Ba, Q. Effect of long-term intake of dietary titanium dioxide nanoparticles on intestine inflammation in mice. J. Agric. Food Chem. 2019, 67, 9382–9389.

    Article  CAS  Google Scholar 

  163. Li, J.; Yang, S. M.; Lei, R. H.; Gu, W. H.; Qin, Y. X.; Ma, S. H.; Chen, K.; Chang, Y.; Bai, X.; Xia, S. B. et al. Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure. Nanoscale 2018, 10, 7736–7745.

    Article  CAS  Google Scholar 

  164. Cao, X. Q.; Han, Y. H.; Gu, M.; Du, H. J.; Song, M. Y.; Zhu, X. A.; Ma, G. X.; Pan, C.; Wang, W. C.; Zhao, E. M. et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: Gut microbiota dysbiosis, colonic inflammation, and proteome alterations. Small 2020, 16, 2001858.

    Article  CAS  Google Scholar 

  165. Li, J. J.; Cha, R. T.; Zhao, X. H.; Guo, H. B.; Luo, H. Z.; Wang, M. Z.; Zhou, F. S.; Jiang, X. Y. Gold nanoparticles cure bacterial infection with benefit to intestinal microflora. ACS Nano 2019, 13, 5002–5014.

    Article  CAS  Google Scholar 

  166. Chen, H. Q.; Zhao, R. F.; Wang, B.; Zheng, L. N.; Ouyang, H.; Wang, H. L.; Zhou, X. Y.; Zhang, D.; Chai, Z. F.; Zhao, Y. L. et al. Acute oral administration of single-walled carbon nanotubes increases intestinal permeability and inflammatory responses: Association with the changes in gut microbiota in mice. Adv. Healthc. Mater. 2018, 7, 1701313.

    Article  CAS  Google Scholar 

  167. Li, J.; Lei, R. H.; Li, X.; Xiong, F. X.; Zhang, Q. Y.; Zhou, Y.; Yang, S. M.; Chang, Y. N.; Chen, K.; Gu, W. H. et al. The antihyperlipidemic effects of fullerenol nanoparticles via adjusting the gut microbiota in vivo. Part. Fibre Toxicol. 2018, 15, 5.

    Article  CAS  Google Scholar 

  168. Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed. 2013, 52, 1636–1653.

    Article  CAS  Google Scholar 

  169. Richter, A. P.; Brown, J. S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E. A.; Paunov, V. N.; Stoyanov, S. D.; Velev, O. D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat Nanotechnol 2015, 10, 817–823.

    Article  CAS  Google Scholar 

  170. Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Lifia, J.; Amal, R. Reversible antimicrobial photoswitching in nanosilver. Small 2009, 5, 341–344.

    Article  CAS  Google Scholar 

  171. Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275.

    Article  CAS  Google Scholar 

  172. Lohse, S. E.; Murphy, C. J. Applications of colloidal inorganic nanoparticles: From medicine to energy. J. Am. Chem. Soc. 2012, 134, 15607–15620.

    Article  CAS  Google Scholar 

  173. Glover, R. D.; Miller, J. M.; Hutchison, J. E. Generation of metal nanoparticles from silver and copper objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 2011, 5, 8950–8957.

    Article  CAS  Google Scholar 

  174. Tian, X.; Jiang, X. M.; Welch, C.; Croley, T. R.; Wong, T. Y.; Chen, C.; Fan, S. H.; Chong, Y.; Li, R. B.; Ge, C. C. et al. Bactericidal effects of silver nanoparticles on Lactobacilli and the underlying mechanism. ACS Appl. Mater. Interfaces 2018, 10, 8443–8450.

    Article  CAS  Google Scholar 

  175. Mao, Z. L.; Li, Y. Q.; Dong, T. Y.; Zhang, L. N.; Zhang, Y. Q.; Li, S. S.; Hu, H. T.; Sun, C. F.; Xia, Y. K. Exposure to titanium dioxide nanoparticles during pregnancy changed maternal gut microbiota and increased blood glucose of rat. Nanoscale Res. Lett. 2019, 14, 26.

    Article  CAS  Google Scholar 

  176. Limage, R.; Tako, E.; Kolba, N.; Guo, Z. Y.; García-Rodríguez, A.; Marques, C. N. H.; Mahler, G. J. TiO2 nanoparticles and commensal bacteria alter mucus layer thickness and composition in a gastrointestinal tract model. Small 2020, 16, 2000601.

    Article  CAS  Google Scholar 

  177. Peters, R. J. B.; van Bemmel, G.; Herrera-Rivera, Z.; Helsper, H. P. F. G.; Marvin, H. J. P.; Weigel, S.; Tromp, P. C.; Oomen, A. G.; Rietveld, A. G.; Bouwmeester, H. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. J. Agric. Food Chem. 2014, 62, 6285–6293.

    Article  CAS  Google Scholar 

  178. Wang, Y.; Chen, Z. J.; Ba, T.; Pu, J.; Chen, T.; Song, Y. S.; Gu, Y. E.; Qian, Q.; Xu, Y. Y.; Xiang, K. et al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 2013, 9, 1742–1752.

    Article  CAS  Google Scholar 

  179. Yang, X. L.; Yang, J. C.; Wang, L.; Ran, B.; Jia, Y. X.; Zhang, L. M.; Yang, G. W.; Shao, H. W.; Jiang, X. Y. Pharmaceutical intermediate-modified gold nanoparticles: Against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 2017, 11, 5737–5745.

    Article  CAS  Google Scholar 

  180. Li, X. N.; Robinson, S. M.; Gupta, A.; Saha, K.; Jiang, Z. W.; Moyano, D. F.; Sahar, A.; Riley, M. A.; Rotello, V. M. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 2014, 8, 10682–10686.

    Article  CAS  Google Scholar 

  181. Vecitis, C. D.; Zodrow, K. R.; Kang, S.; Elimelech, M. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 2010, 4, 5471–5479.

    Article  CAS  Google Scholar 

  182. Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 2007, 23, 8670–8673.

    Article  CAS  Google Scholar 

  183. Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736.

    Article  CAS  Google Scholar 

  184. Rajavel, K.; Gomathi, R.; Manian, S.; Rajendra Kumar, R. T. In vitro bacterial cytotoxicity of CNTs: Reactive oxygen species mediate cell damage edges over direct physical puncturing. Langmuir 2014, 30, 592–601.

    Article  CAS  Google Scholar 

  185. Lyon, D. Y.; Brunet, L.; Hinkal, G. W.; Wiesner, M. R.; Alvarez, P. J. J. Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett. 2008, 8, 1539–1543.

    Article  CAS  Google Scholar 

  186. Kang, S.; Herzberg, M.; Rodrigues, D. F.; Elimelech, M. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir 2008, 24, 6409–6413.

    Article  CAS  Google Scholar 

  187. Bertoni, S.; Liu, Z. H.; Correia, A.; Martins, J. P.; Rahikkala, A.; Fontana, F.; Kemell, M.; Liu, D. F.; Albertini, B.; Passerini, N. et al. pH and reactive oxygen species-sequential responsive nano-in-micro composite for targeted therapy of inflammatory bowel disease. Adv. Funct. Mater. 2018, 28, 1806175.

    Article  CAS  Google Scholar 

  188. Liu, T. F.; Xiao, B. W.; Xiang, F.; Tan, J. L.; Chen, Z.; Zhang, X. R.; Wu, C. Z.; Mao, Z. W.; Luo, G. X.; Chen, X. Y. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11, 2788.

    Article  CAS  Google Scholar 

  189. Sardesai, N. P.; Ganesana, M.; Karimi, A.; Leiter, J. C.; Andreescu, S. Platinum-doped ceria based biosensor for in vitro and in vivo monitoring of lactate during hypoxia. Anal. Chem. 2015, 87, 2996–3003.

    Article  CAS  Google Scholar 

  190. Soh, M.; Kang, D. W.; Jeong, H. G.; Kim, D.; Kim, D. Y.; Yang, W.; Song, C.; Baik, S.; Choi, I. Y.; Ki, S. K. et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem., Int. Ed. 2017, 56, 11399–11403.

    Article  CAS  Google Scholar 

  191. Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

    Article  CAS  Google Scholar 

  192. Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Nanotechnol. 2007, 25, 1165–1170.

    CAS  Google Scholar 

  193. Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348.

    Article  CAS  Google Scholar 

  194. Cui, X. J.; Bao, L.; Wang, X. Y.; Chen, C. Y. The nano-intestine interaction: Understanding the location-oriented effects of engineered nanomaterials in the intestine. Small 2020, 16, 1907665.

    Article  CAS  Google Scholar 

  195. Saleh, M.; Trinchieri, G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat. Rev. Immunol. 2011, 11, 9–20.

    Article  CAS  Google Scholar 

  196. Sun, Y.; Li, L.; Xie, R. X.; Wang, B. M.; Jiang, K.; Cao, H. L. Stress triggers flare of inflammatory bowel disease in children and adults. Front Pediatr. 2019, 7, 432.

    Article  Google Scholar 

  197. Spiller, R.; Major, G. IBS and IBD-separate entities or on a spectrum? Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 613–621.

    Article  CAS  Google Scholar 

  198. Mayer, E. A.; Padua, D.; Tillisch, K. Altered brain-gut axis in autism: Comorbidity or causative mechanisms? BioEssays 2014, 36, 933–939.

    Article  Google Scholar 

  199. Mayer, E. A.; Savidge, T.; Shulman, R. J. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 2014, 146, 1500–1512.

    Article  CAS  Google Scholar 

  200. Zhao, B. T.; Wu, J. B.; Li, J. H.; Bai, Y.; Luo, Y.; Ji, B.; Xia, B.; Liu, Z. G.; Tan, X. T.; Lv, J. Y. et al. Lycopene alleviates DSS-induced colitis and behavioral disorders via mediating microbes-gut-brain axis balance. J. Agric. Food Chem. 2020, 68, 3963–3975.

    Article  CAS  Google Scholar 

  201. Song, W.; Anselmo, A. C.; Huang, L. Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol. 2019, 14, 1093–1103.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 91859101, 81971744, U1932107, and 81471786), the National Natural Science Foundation of Tianjin (No. 19JCZDJC34000), and the Innovation Foundation of Tianjin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., Sun, S. & Zhang, XD. Redox-active nanoparticles for inflammatory bowel disease. Nano Res. 14, 2535–2557 (2021). https://doi.org/10.1007/s12274-021-3303-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3303-5

Keywords

Navigation