Skip to main content
Log in

Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphdiyne (GDY) is emerging as a promising material for various applications owing to its unique structure and fascinating properties. However, the application of GDY in electronics and optoelectronics are still in its infancy, primarily owing to the huge challenge in the synthesis of large-area and uniform GDY film for scalable applications. Here a modified van der Waals epitaxy strategy is proposed to synthesize wafer-scale GDY film with high uniformity and controllable thickness directly on graphene (Gr) surface, providing an ideal platform to construct large-scale GDY/Gr-based optoelectronic synapse array. Essential synaptic behaviors have been realized, and the linear and symmetric conductance-update characteristics facilitate the implementation of neuromorphic computing for image recognition with high accuracy and strong fault tolerance. Logic functions including “NAND” and “NOR” are integrated into the synapse which can be executed in an optical pathway. Moreover, a visible information sensing-memory-processing system is constructed to execute real-time image acquisition, in situ image memorization and distinction tasks, avoiding the time latency and energy consumption caused by data conversion and transmission in conventional visual systems. These results highlight the potential of GDY in applications of neuromorphic computing and artificial visual systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

    Article  CAS  Google Scholar 

  2. Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

    Article  CAS  Google Scholar 

  3. Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936.

    Article  CAS  Google Scholar 

  4. Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586.

    Article  CAS  Google Scholar 

  5. Chen, J. M.; Xi, J. Y.; Wang, D.; Shuai, Z. G. Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction. J. Phys. Chem. Lett. 2013, 4, 1443–1448.

    Article  CAS  Google Scholar 

  6. Li, C.; Lu, X. L.; Han, Y. Y.; Tang, S. F.; Ding, Y.; Liu, R. R.; Bao, H. H.; Li, Y. L.; Luo, J.; Lu, T. B. Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Res. 2018, 11, 1714–1721.

    Article  CAS  Google Scholar 

  7. Li, J. F.; Wan, C. J.; Wang, C.; Zhang, H.; Chen, X. D. 2D material chemistry: Graphdiyne-based biochemical sensing. Chem. Res. Chin. Univ. 2020, 36, 622–630.

    Article  CAS  Google Scholar 

  8. Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

    Article  CAS  Google Scholar 

  9. Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683.

    Article  CAS  Google Scholar 

  10. Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat.Chem. 2018, 10, 924–931.

    Article  CAS  Google Scholar 

  11. Huang, C. H.; Zhang, S. L.; Liu, H. B.; Li, Y. J.; Cui, G. L.; Li, Y. L. Graphdiyne for high capacity and long-life lithium storage. Nano Energy 2015, 11, 481–489.

    Article  CAS  Google Scholar 

  12. Lu, C.; Yang, Y.; Wang, J.; Fu, R. P.; Zhao, X. X.; Zhao, L.; Ming, Y.; Hu, Y.; Lin, H. Z.; Tao, X. M. et al. High-performance graphdiyne-based electrochemical actuators. Nat. Commun. 2018, 9, 752.

    Article  Google Scholar 

  13. He, J. J.; Wang, N.; Cui, Z. L.; Du, H. P.; Fu, L.; Huang, C. S.; Yang, Z.; Shen, X. Y.; Yi, Y. P.; Tu, Z. Y. et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat.Commun. 2017, 8, 1172.

    Article  Google Scholar 

  14. Jiang, T.; Chen, K.; Wang, J. J.; Hu, Z. L.; Wang, G. L.; Chen, X. D.; Sun, P. F.; Zhang, Q. B.; Yan, C. L.; Zhang, L. Nitrogen-doped graphdiyne nanowall stabilized dendrite-free lithium metal anodes. J. Mater. Chem. A 2019, 7, 27535–27546.

    Article  CAS  Google Scholar 

  15. Yang, C.; Wang, H. F.; Xu, Q. Recent advances in two-dimensional materials for electrochemical energy storage and conversion. Chem. Res. Chin. Univ. 2020, 36, 10–23.

    Article  CAS  Google Scholar 

  16. Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Optimized geometries and electronic structures of graphyne and its family. Phys. Rev. B 1998, 58, 11009–11014.

    Article  CAS  Google Scholar 

  17. Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai, Z. G. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593–2600.

    Article  CAS  Google Scholar 

  18. Jin, Z. W.; Chen, Y. H.; Zhou, Q.; Mao, P.; Liu, H. B.; Wang, J. Z.; Li, Y. L. Graphdiyne for multilevel flexible organic resistive random access memory devices. Mater. Chem. Front. 2017, 1, 1338–1341.

    Article  CAS  Google Scholar 

  19. Zhang, Y.; Huang, P.; Guo, J.; Shi, R. C.; Huang, W. C.; Shi, Z.; Wu, L. M.; Zhang, F.; Gao, L. F.; Li, C. et al. Graphdiyne-based flexible photodetectors with high responsivity and detectivity. Adv. Mater. 2020, 32, 2001082.

    Article  CAS  Google Scholar 

  20. Li, W. H.; Liu, J.; Yu, Y. X.; Feng, G. Y.; Song, Y. R.; Liang, Q.; Liu, L.; Lei, S. B.; Hu, W. P. Synthesis of large-area ultrathin graphdiyne films at an air-water interface and their application in memristors. Mater. Chem. Front. 2020, 4, 1268–1273.

    Article  CAS  Google Scholar 

  21. Li, Y.; Zhang, M. J.; Hu, X. L.; Fan, X. H.; Yu, L. M.; Huang, C. S. Light and heat triggering modulation of the electronic performance of a graphdiyne-based thin film transistor. J. Phys. Chem. Lett. 2020, 11, 1998–2005.

    Article  Google Scholar 

  22. Zhang, M. J.; Li, Y.; Li, X. D.; Wang, N. Y.; Huang, C. S. Graphdiyne ink for ionic liquid gated printed transistor. Adv. Electron. Mater. 2020, 6, 2000157.

    Article  CAS  Google Scholar 

  23. Gao, X.; Zhu, Y. H.; Yi, D.; Zhou, J. Y.; Zhang, S. S.; Yin, C.; Ding, F.; Zhang, S. Q.; Yi, X. H.; Wang, J. Z. et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 2018, 4, eaat6378.

    Article  Google Scholar 

  24. Wang, X. H.; Zhang, Z. C.; Wang, J. J.; Chen, X. D.; Yao, B. W.; Hou, Y. X.; Yu, M. X.; Li, Y.; Lu, T. B. Synthesis of wafer-scale monolayer pyrenyl graphdiyne on ultrathin hexagonal boron nitride for multibit optoelectronic memory. ACS Appl. Mater. Interfaces 2020, 12, 33069–33075.

    Article  CAS  Google Scholar 

  25. Wang, T. Y.; Meng, J. L.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 2020, 7, 1903480.

    Article  CAS  Google Scholar 

  26. Yu, S. M.; Gao, B.; Fang, Z.; Yu, H. Y.; Kang, J. F.; Wong, H. S. P. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 2013, 25, 1774–1779.

    Article  CAS  Google Scholar 

  27. Seo, S.; Kang, B. S.; Lee, J. J.; Ryu, H. J.; Kim, S.; Kim, H.; Oh, S.; Shim, J.; Heo, K.; Oh, S. et al. Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition. Nat. Commun. 2020, 11, 3936.

    Article  CAS  Google Scholar 

  28. Dai, S. L.; Zhao, Y. W.; Wang, Y.; Zhang, J. Y.; Fang, L.; Jin, S.; Shao, Y. L.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700.

    Article  CAS  Google Scholar 

  29. Wei, H. H.; Yu, H. Y.; Gong, J. D.; Ma, M. X.; Han, H.; Ni, Y.; Zhang, S.; Xu, W. T. Redox MXene artificial synapse with bidirectional plasticity and hypersensitive responsibility. Adv. Funct. Mater. 2021, 30, 2007232.

    Article  Google Scholar 

  30. Han, H.; Yu, H. Y.; Wei, H. H.; Gong, J. D.; Xu, W. T. Recent progress in three-terminal artificial synapses: From device to system. Small 2019, 15, 1900695.

    Article  Google Scholar 

  31. Gong, J. D.; Yu, H. Y.; Zhou, X.; Wei, H. H.; Ma, M. X.; Han, H.; Zhang, S.; Ni, Y.; Li, Y. L.; Xu, W. T. Lateral artificial synapses on hybrid perovskite platelets with modulated neuroplasticity. Adv. Funct. Mater. 2020, 2005413.

  32. Han, X.; Xu, Z. S.; Wu, W. Q.; Liu, X. H.; Yan, P. G.; Pan, C. F. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 2020, 1, 2000029.

    Article  Google Scholar 

  33. Seo, S.; Jo, S. H.; Kim, S.; Shim, J.; Oh, S.; Kim, J. H.; Heo, K.; Choi, J. W.; Choi, C.; Oh, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 2018, 9, 5106.

    Article  Google Scholar 

  34. Duan, N.; Li, Y.; Chiang, H. C.; Chen, J.; Pan, W. Q.; Zhou, Y. X.; Chien, Y. C.; He, Y. H.; Xue, K. H.; Liu, G. et al. An electro-photosensitive synaptic transistor for edge neuromorphic visual systems. Nanoscale 2019, 11, 17590–17599.

    Article  CAS  Google Scholar 

  35. Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

    Article  CAS  Google Scholar 

  36. Qin, S. C.; Wang, F. Q.; Liu, Y. J.; Wan, Q.; Wang, X. R.; Xu, Y. B.; Shi, Y.; Wang, X. M.; Zhang, R. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater. 2017, 4, 035022.

    Article  Google Scholar 

  37. Hong, S.; Choi, S. H.; Park, J.; Yoo, H.; Oh, J. Y.; Hwang, E.; Yoon, D. H.; Kim, S. Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1−xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 2020, 14, 9796–9806.

    Article  CAS  Google Scholar 

  38. Hou, X.; Liu, C. S.; Ding, Y.; Liu, L.; Wang, S. Y.; Zhou, P. A logic-memory transistor with the integration of visible information sensing-memory-processing. Adv. Sci. 2020, 7, 2002072.

    Article  CAS  Google Scholar 

  39. Ahmed, T.; Kuriakose, S.; Mayes, E. L. H.; Ramanathan, R.; Bansal, V.; Bhaskaran, M.; Sriram, S.; Walia, S. Optically stimulated artificial synapse based on layered black phosphorus. Small 2019, 15, 1900966.

    Article  Google Scholar 

  40. Hou, Y. X.; Li, Y.; Zhang, Z. C.; Li, J. Q.; Qi, D. H.; Chen, X. D.; Wang, J. J.; Yao, B. W.; Yu, M. X.; Lu, T. B. et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 2021, 15, 1497–1508.

    Article  CAS  Google Scholar 

  41. Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 2018, 30, 1705400.

    Article  Google Scholar 

  42. Sun, F. Q.; Lu, Q. F.; Liu, L.; Li, L. H.; Wang, Y. Y.; Hao, M. M.; Cao, Z. G.; Wang, Z. H.; Wang, S. Q.; Li, T. et al. Bioinspired flexible, dual-modulation synaptic transistors toward artificial visual memory systems. Adv. Mater. Technol. 2020, 5, 1900888.

    Article  CAS  Google Scholar 

  43. Zhao, Y. S.; Yang, N. L.; Yao, H. Y.; Liu, D. B.; Song, L.; Zhu, J.; Li, S. Z.; Gu, L.; Lin, K. F.; Wang, D. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240–7244.

    Article  CAS  Google Scholar 

  44. Zhao, Y. S.; Tang, H. J.; Yang, N. L.; Wang, D. Graphdiyne: Recent achievements in photo- and electrochemical conversion. Adv. Sci. 2018, 5, 1800959.

    Article  Google Scholar 

  45. Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596–7599.

    Article  CAS  Google Scholar 

  46. Zhou, J. Y.; Xie, Z. Q.; Liu, R.; Gao, X.; Li, J. Q.; Xiong, Y.; Tong, L. M.; Zhang, J.; Liu, Z. F. Synthesis of ultrathin graphdiyne film using a surface template. ACS Appl. Mater. Interfaces 2019, 11, 2632–2637.

    Article  CAS  Google Scholar 

  47. Zhang, S. Q.; Wang, J. Y.; Li, Z. Z.; Zhao, R. Q.; Tong, L. M.; Liu, Z. F.; Zhang, J.; Liu, Z. R. Raman spectra and corresponding strain effects in graphyne and graphdiyne. J. Phys. Chem. C 2016, 120, 10605–10613.

    Article  CAS  Google Scholar 

  48. Leong, W. S.; Wang, H. Z.; Yeo, J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P. C.; Mao, Y. W.; Palacios, T.; Buehler, M. J.; Hong, J. Y. et al. Paraffin-enabled graphene transfer. Nat.Commun. 2019, 10, 867.

    Article  Google Scholar 

  49. Li, J. Q.; Xiong, Y.; Xie, Z. Q.; Gao, X.; Zhou, J. Y.; Yin, C.; Tong, L. M.; Chen, C. G.; Liu, Z. F.; Zhang, J. Template synthesis of an ultrathin β-graphdiyne-like film using the eglinton coupling reaction. ACS Appl. Mater. Interfaces 2019, 11, 2734–2739.

    Article  CAS  Google Scholar 

  50. Lafkioti, M.; Krauss, B.; Lohmann, T.; Zschieschang, U.; Klauk, H.; v. Klitzing, K.; Smet, J. H. Graphene on a hydrophobic substrate: Doping reduction and hysteresis suppression under ambient conditions. Nano Lett. 2010, 10, 1149–1153.

    Article  CAS  Google Scholar 

  51. Wang, X. M.; Xie, W. G.; Du, J.; Wang, C. L.; Zhao, N.; Xu, J. B. Graphene/metal contacts: Bistable states and novel memory devices. Adv. Mater. 2012, 24, 2614–2619.

    Article  CAS  Google Scholar 

  52. Tian, H.; Mi, W. T.; Wang, X. F.; Zhao, H. M.; Xie, Q. Y.; Li, C.; Li, Y. X.; Yang, Y.; Ren, T. L. Graphene dynamic synapse with modulatable plasticity. Nano Lett. 2015, 15, 8013–8019.

    Article  CAS  Google Scholar 

  53. Tian, H.; Guo, Q. S.; Xie, Y. J.; Zhao, H.; Li, C.; Cha, J. J.; Xia, F. N.; Wang, H. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 2016, 28, 4991–4997.

    Article  CAS  Google Scholar 

  54. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat.Nanotechnol. 2012, 7, 363–368.

    Article  CAS  Google Scholar 

  55. Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

    Article  CAS  Google Scholar 

  56. Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H. High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 2015, 27, 41–46.

    Article  CAS  Google Scholar 

  57. Wu, H. L.; Si, H. N.; Zhang, Z. H.; Kang, Z.; Wu, P. W.; Zhou, L. X.; Zhang, S. C.; Zhang, Z.; Liao, Q. L.; Zhang, Y. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 2018, 5, 1801219.

    Article  Google Scholar 

  58. Queisser, H. J.; Theodorou, D. E. Decay kinetics of persistent photoconductivity in semiconductors. Phys. Rev. B 1986, 33, 4027–4033.

    Article  CAS  Google Scholar 

  59. Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

    Article  CAS  Google Scholar 

  60. Yin, L.; Han, C.; Zhang, Q. T.; Ni, Z. Y.; Zhao, S. Y.; Wang, K.; Li, D. S.; Xu, M. S.; Wu, H. Q.; Pi, X. D. et al. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy 2019, 63, 103859.

    Article  CAS  Google Scholar 

  61. Ahmed, T.; Kuriakose, S.; Abbas, S.; Spencer, M. J. S.; Rahman, M. A.; Tahir, M.; Lu, Y. R.; Sonar, P.; Bansal, V.; Bhaskaran, M. et al. Multifunctional optoelectronics via harnessing defects in layered black phosphorus. Adv. Funct. Mater. 2019, 29, 1901991.

    Article  Google Scholar 

  62. Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat.Mater. 2011, 10, 591–595.

    Article  CAS  Google Scholar 

  63. Elkins, R. L.; Richards, T. L.; Nielsen, R.; Repass, R.; Stahlbrandt, H.; Hoffman, H. G. The neurobiological mechanism of chemical aversion (emetic) therapy for alcohol use disorder: An fmri study. Front. Behav. Neurosci. 2017, 11, 182.

    Article  Google Scholar 

  64. Yang, C. S.; Shang, D. S.; Liu, N.; Fuller, E. J.; Agrawal, S.; Talin, A. A.; Li, Y. Q.; Shen, B. G.; Sun, Y. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 2018, 28, 1804170.

    Article  Google Scholar 

  65. Sun, J.; Oh, S.; Choi, Y.; Seo, S.; Oh, M. J.; Lee, M.; Lee, W. B.; Yoo, P. J.; Cho, J. H.; Park, J. H. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater. 2018, 28, 1804397.

    Article  Google Scholar 

  66. Yu, J. J.; Liang, L. Y.; Hu, L. X.; Duan, H. X.; Wu, W. H.; Zhang, H. L.; Gao, J. H.; Zhuge, F.; Chang, T. C.; Cao, H. T. Optoelectronic neuromorphic thin-film transistors capable of selective attention and with ultra-low power dissipation. Nano Energy 2019, 62, 772–780.

    Article  CAS  Google Scholar 

  67. Wang, Y.; Lv, Z. Y.; Chen, J. R.; Wang, Z. P.; Zhou, Y.; Zhou, L.; Chen, X. L.; Han, S. T. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 2018, 30, 1802883.

    Article  Google Scholar 

  68. Toni, N.; Buchs, P. A.; Nikonenko, I.; Bron, C. R.; Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 1999, 402, 421–425.

    Article  CAS  Google Scholar 

  69. Kim, K.; Chen, C. L.; Truong, Q.; Shen, A. M.; Chen, Y. A carbon nanotube synapse with dynamic logic and learning. Adv. Mater. 2013, 25, 1693–1698.

    Article  CAS  Google Scholar 

  70. Cho, S. W.; Kwon, S. M.; Lee, M.; Jo, J. W.; Heo, J. S.; Kim, Y. H.; Cho, H. K.; Park, S. K. Multi-spectral gate-triggered heterogeneous photonic neuro-transistors for power-efficient brain-inspired neuromorphic computing. Nano Energy 2019, 66, 104097.

    Article  CAS  Google Scholar 

  71. Karbalaei Akbari, M.; Hu, J.; Verpoort, F.; Lu, H. L.; Zhuiykov, S. Nanoscale all-oxide-heterostructured bio-inspired optoresponsive nociceptor. Nano-Micro Lett. 2020, 12, 83.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21790052 and 51802220) and Natural Science Foundation of Tianjin City (No. 19JCYBJC17300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Dong Chen or Tong-Bu Lu.

Electronic Supplementary Material

12274_2021_3381_MOESM1_ESM.pdf

Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZC., Li, Y., Wang, JJ. et al. Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems. Nano Res. 14, 4591–4600 (2021). https://doi.org/10.1007/s12274-021-3381-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3381-4

Keywords

Navigation