Skip to main content
Log in

Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aqueous rechargeable zinc ion batteries (ARZIBs) have received unprecedented attention owing to the low cost and high-safety merits. However, their further development and application are hindered by the issues of electrodes such as cathode dissolution, zinc anode dendrite, passivation, as well as sluggish reaction kinetics. Designing heterostructure electrodes is a powerful method to improve the electrochemical performance of electrodes by grafting the advantages of functional materials onto the active materials. In this review, various modified heterostructure electrodes with optimized electrochemical performance and wider applications are introduced. Moreover, the synergistic effect between active materials and functional materials are also in-depth analyzed. The specific modification methods are divided into interphase modification (electrode-electrolyte interphase and electrode-current collector interphase) and structure optimization. Finally, the conclusion and future perspective on the optimization mechanism of functional materials, and the cost issue of practical heterostructure electrodes in ARZIBs are also proposed. It is expected that this review can promote the further development of ARZIBs towards practical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  1. Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2016, 16, 45–56.

    Article  CAS  Google Scholar 

  2. Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5–19.

    Article  Google Scholar 

  3. Liu, Z. H.; Yu, Q.; Zhao, Y. L.; He, R. H.; Xu, M.; Feng, S. H.; Li, S. D.; Zhou, L.; Mai, L. Q. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285–309.

    Article  CAS  Google Scholar 

  4. An, Q. Y.; Zhang, P. F.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 2015, 8, 481–490.

    Article  CAS  Google Scholar 

  5. Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium-sulfur batteries. Nano Res. 2017, 10, 4027–4054.

    Article  CAS  Google Scholar 

  6. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  CAS  Google Scholar 

  7. He, P.; Chen, Q.; Yan, M. Y.; Xu, X.; Zhou, L.; Mai, L. Q.; Nan, C. W. Building better zinc-ion batteries: A materials perspective. EnergyChem 2019, 1, 100022.

    Article  Google Scholar 

  8. Li, M.; Lu, J.; Ji, X. L.; Li, Y. G.; Shao, Y. Y.; Chen, Z. W.; Zhong, C.; Amine, K. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 2020, 5, 276–294.

    Article  CAS  Google Scholar 

  9. Zhang, Y. J.; Chen, Z.; Qiu, H. Y.; Yang, W. H.; Zhao, Z. M.; Zhao, J. W.; Cui, G. L. Pursuit of reversible Zn electrochemistry: A timehonored challenge towards low-cost and green energy storage. NPG Asia Mater. 2020, 12, 4.

    Article  CAS  Google Scholar 

  10. Liu, Z. X.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180–232.

    Article  CAS  Google Scholar 

  11. Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

    Article  CAS  Google Scholar 

  12. Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

    Article  CAS  Google Scholar 

  13. Yu, Y. X.; Xu, W.; Liu, X. Q.; Lu, X. H. Challenges and strategies for constructing highly reversible zinc anodes in aqueous zinc-ion batteries: Recent progress and future perspectives. Adv. Sustain. Syst. 2020, 4, 2000082.

    Article  CAS  Google Scholar 

  14. Li, M.; He, Q.; Li, Z. L.; Li, Q.; Zhang, Y. X.; Meng, J. S.; Liu, X.; Li, S. D.; Wu, B. K.; Chen, L. N. et al. A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 2019, 9, 1901469.

    Article  CAS  Google Scholar 

  15. Li, M.; Meng, J. S.; Li, Q.; Huang, M.; Liu, X.; Owusu, K. A.; Liu, Z.; Mai, L. Q. Finely crafted 3D electrodes for dendrite-free and highperformance flexible fiber-shaped Zn-Co batteries. Adv. Funct. Mater. 2018, 28, 1802016.

    Article  CAS  Google Scholar 

  16. Bi, S.; Wu, Y.; Cao, A.; Tian, J.; Zhang, S.; Niu, Z. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Mater. Today Energy 2020, 18, 100548.

    Article  Google Scholar 

  17. Pan, Z.; Yang, J.; Jiang, J.; Qiu, Y.; Wang, J. Flexible quasi-solid-state aqueous Zn-based batteries: Rational electrode designs for highperformance and mechanical flexibility. Mater. Today Energy 2020, 18, 100523.

    Article  Google Scholar 

  18. Xu, L.; Zhang, Y.; Zheng, J.; Jiang, H.; Hu, T.; Meng, C. Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries. Mater. Today Energy 2020, 18, 100509.

    Article  Google Scholar 

  19. Xue, T.; Fan, H. J. From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story. J. Energy Chem. 2021, 54, 194–201.

    Article  Google Scholar 

  20. Zhang, T. S.; Tang, Y.; Fang, G. Z.; Zhang, C. Y.; Zhang, H. L.; Guo, X.; Cao, X. X.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte. Adv. Funct. Mater. 2020, 30, 2002711.

    Article  CAS  Google Scholar 

  21. Zhu, K. Y.; Wu, T.; Sun, S. C.; van den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2020, 29, 60–70.

    Article  Google Scholar 

  22. Li, Z.; Wu, B. K.; Yan, M. Y.; He, L.; Xu, L.; Zhang, G. B.; Xiong, T. F.; Luo, W.; Mai, L. Q. Novel charging-optimized cathode for a fast and high-capacity zinc-ion battery. ACS Appl. Mater. Interfaces 2020, 12, 10420–10427.

    Article  CAS  Google Scholar 

  23. Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

    Article  CAS  Google Scholar 

  24. Cao, Z. Y.; Zhuang, P. Y.; Zhang, X.; Ye, M. X.; Shen, J. F.; Ajayan, P. M. Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 2020, 10, 2001599.

    Article  CAS  Google Scholar 

  25. Wu, T. H.; Zhang, Y.; Althouse, Z. D.; Liu, N. Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Mater. Today Nano 2019, 6, 100032.

    Article  Google Scholar 

  26. Yang, Q.; Liang, G. J.; Guo, Y.; Liu, Z. X.; Yan, B. X.; Wang, D. H.; Huang, Z. D.; Li, X. L.; Fan, J.; Zhi, C. Y. Do zinc dendrites exist in neutral zinc batteries: A developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 2019, 31, 1903778.

    Article  CAS  Google Scholar 

  27. Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

    Article  CAS  Google Scholar 

  28. Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

    Article  CAS  Google Scholar 

  29. Zhu, Q. C.; Xiao, Q.; Zhang, B. W.; Yan, Z. C.; Liu, X.; Chen, S.; Ren, Z. F.; Yu, Y. VS4 with a chain crystal structure used as an intercalation cathode for aqueous zn-ion batteries. J. Mater. Chem. A 2020, 8, 10761–10766.

    Article  CAS  Google Scholar 

  30. Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1.5 v: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5, 1400930.

    Article  CAS  Google Scholar 

  31. Zhu, K. Y.; Wu, T.; Sun, S. C.; Wen, Y. T.; Huang, K. Electrode materials for practical rechargeable aqueous Zn-ion batteries: Challenges and opportunities. ChemElectroChem 2020, 7, 2714–2734.

    Article  CAS  Google Scholar 

  32. Nam, K. W.; Park, S. S.; dos Reis, R.; Dravid, V. P.; Kim, H.; Mirkin, C. A.; Stoddart, J. F. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 2019, 10, 4948.

    Article  CAS  Google Scholar 

  33. Zhang, H. Z.; Fang, Y. B.; Yang, F.; Liu, X. Q.; Lu, X. H. Aromatic organic molecular crystal with enhanced π-π stacking interaction for ultrafast Zn-ion storage. Energ. Environ. Sci. 2020, 13, 2515–2523.

    Article  CAS  Google Scholar 

  34. Mathew, V.; Sambandam, B.; Kim, S.; Kim, S.; Park, S.; Lee, S.; Alfaruqi, M. H.; Soundharrajan, V.; Islam, S.; Putro, D. Y. et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments. Acs Energy Lett. 2020, 5, 2376–2400.

    Article  CAS  Google Scholar 

  35. Liu, S. D.; Kang, L.; Kim, J. M.; Chun, Y. T.; Zhang, J.; Jun, S. C. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv. Energy Mater. 2020, 10, 2000477.

    Article  CAS  Google Scholar 

  36. Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.

    Article  CAS  Google Scholar 

  37. Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y. et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2018, 30, 1703725.

    Article  CAS  Google Scholar 

  38. Chen, L. N.; Ruan, Y. S.; Zhang, G. B.; Wei, Q. L.; Jiang, Y. L.; Xiong, T. F.; He, P.; Yang, W.; Yan, M. Y.; An, Q. Y. et al. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction. Chem. Mater. 2019, 31, 699–706.

    Article  CAS  Google Scholar 

  39. Jiang, H. M.; Zhang, Y. F.; Liu, Y. Y.; Yang, J.; Xu, L.; Wang, P.; Gao, Z. M.; Zheng, J. Q.; Meng, C. G.; Pan, Z. H. In situ grown 2D hydrated ammonium vanadate nanosheets on carbon cloth as a free-standing cathode for high-performance rechargeable Zn-ion batteries. J. Mater. Chem. A 2020, 8, 15130–15139.

    Article  CAS  Google Scholar 

  40. Guo, J.; Ming, J.; Lei, Y. J.; Zhang, W. L.; Xia, C.; Cui, Y.; Alshareef, H. N. Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries. ACS Energy Lett. 2019, 4, 2776–2781.

    Article  CAS  Google Scholar 

  41. Wu, B. K.; Wu, Y. Z.; Lu, Z. D.; Zhang, J. S.; Han, N.; Wang, Y. M.; Li, X. M.; Lin, M.; Zeng, L. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J. Mater. Chem. A 2021, 9, 4734–4743.

    Article  CAS  Google Scholar 

  42. Li, J. F.; Chen, Y. H.; Guo, J.; Wang, F. H.; Liu, H. B.; Li, Y. L. Graphdiyne oxide-based high-performance rechargeable aqueous Zn-MnO2 battery. Adv. Funct. Mater. 2020, 30, 2004115.

    Article  CAS  Google Scholar 

  43. Wu, B. K.; Zhang, G. B.; Yan, M. Y.; Xiong, T. F.; He, P.; He, L.; Xu, X.; Mai, L. Q. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 2018, 14, 1703850.

    Google Scholar 

  44. Gou, L.; Xue, D.; Mou, K. L.; Zhao, S. P.; Wang, Y.; Fan, X. Y.; Li, D. L. α-MnO2@In2O3 nanotubes as cathode material for aqueous rechargeable Zn-ion battery with high electrochemical performance. J. Electrochem. Soc. 2019, 166, A3362–A3368.

    Article  CAS  Google Scholar 

  45. Zeng, Y. X.; Zhang, X. Y.; Meng, Y.; Yu, M. H.; Yi, J. N.; Wu, Y. Q.; Lu, X. H.; Tong, Y. X. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 2017, 29, 1700274.

    Article  CAS  Google Scholar 

  46. Liu, X.; Xu, G. B.; Zhang, Q.; Huang, S. J.; Li, L.; Wei, X. L.; Cao, J. X.; Yang, L. W.; Chu, P. K. Ultrathin hybrid nanobelts of single-crystalline VO2 and poly(3,4-ethylenedioxythiophene) as cathode materials for aqueous zinc ion batteries with large capacity and high-rate capability. J. Power Sources 2020, 463, 228223.

    Article  CAS  Google Scholar 

  47. Zhang, H. Z.; Wang, J.; Liu, Q. Y.; He, W. Y.; Lai, Z. Z.; Zhang, X. Y.; Yu, M. H.; Tong, Y. X.; Lu, X. H. Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater. 2019, 21, 154–161.

    Article  Google Scholar 

  48. Xu, D. M.; Wang, H. W.; Li, F. Y.; Guan, Z. C.; Wang, R.; He, B. B.; Gong, Y. S.; Hu, X. L. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv. Mate. Interfaces 2019, 6, 1801506.

    Article  CAS  Google Scholar 

  49. Zhang, Y.; Xu, G. B.; Liu, X.; Wei, X. L.; Cao, J. X.; Yang, L. W. Scalable in situ reactive assembly of polypyrrole-coated MnO2 nanowire and carbon nanotube composite as freestanding cathodes for high performance aqueous Zn-ion batteries. ChemElectroChem 2020, 7, 2762–2770.

    Article  CAS  Google Scholar 

  50. Guo, C.; Tian, S.; Chen, B. L.; Liu, H. M.; Li, J. F. Constructing α-MnO2@PPy core-shell nanorods towards enhancing electrochemical behaviors in aqueous zinc ion battery. Mater. Lett. 2020, 262, 127180.

    Article  CAS  Google Scholar 

  51. Zhu, C. Y.; Fang, G. Z.; Zhou, J.; Guo, J. H.; Wang, Z. Q.; Wang, C.; Li, J. Y.; Tang, Y.; Liang, S. Q. Binder-free stainless steel@Mn3O4 nanoflower composite: A high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J. Mater. Chem. A 2018, 6, 9677–9683.

    Article  CAS  Google Scholar 

  52. He, B.; Zhang, Q. C.; Li, L. H.; Sun, J.; Man, P.; Zhou, Z. Y.; Li, Q. L.; Guo, J. B.; Xie, L. Y.; Li, C. W. et al. High-performance flexible all-solid-state aqueous rechargeable Zn-MnO2 microbatteries integrated with wearable pressure sensors. J. Mater. Chem. A 2018, 6, 14594–14601.

    Article  CAS  Google Scholar 

  53. Javed, M. S.; Lei, H.; Wang, Z. L.; Liu, B. T.; Cai, X.; Mai, W. J. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573.

    Article  CAS  Google Scholar 

  54. Wang, K.; Zhang, X. H.; Han, J. W.; Zhang, X.; Sun, X. Z.; Li, C.; Liu, W. H.; Li, Q. W.; Ma, Y. W. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 2018, 10, 24573–24582.

    Article  CAS  Google Scholar 

  55. Shi, W. H.; Rui, X. H.; Zhu, J. X.; Yan, Q. Y. Design of nanostructured hybrid materials based on carbon and metal oxides for li ion batteries. J. Phys. Chem. C 2012, 116, 26685–26693.

    Article  CAS  Google Scholar 

  56. Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a crosslinked polyacrylamide electrolyte. ACS Nano 2018, 12, 3140–3148.

    Article  CAS  Google Scholar 

  57. Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

    Article  CAS  Google Scholar 

  58. Wang, X.; Li, Y. G.; Das, P.; Zheng, S. H.; Zhou, F.; Wu, Z. S. Layer-by-layer stacked amorphous V2O5/graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Storage Mater. 2020, 31, 156–163.

    Article  Google Scholar 

  59. Boruah, B. D.; Mathieson, A.; Wen, B.; Feldmann, S.; Dose, W. M.; De Volder, M. Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 2020, 13, 2414–2421.

    Article  CAS  Google Scholar 

  60. Gong, X. Z.; Liu, G. Z.; Li, Y. S.; Yu, D. Y. W.; Teoh, W. Y. Functionalized-graphene composites: Fabrication and applications in sustainable energy and environment. Chem. Mater. 2016, 28, 8082–8118.

    Article  CAS  Google Scholar 

  61. El-Kady, M. F.; Shao, Y. L.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033.

    Article  CAS  Google Scholar 

  62. Cai, Y. S.; Liu, F.; Luo, Z. G.; Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 2018, 13, 168–174.

    Article  Google Scholar 

  63. Wang, X.; Li, Y. G.; Wang, S.; Zhou, F.; Das, P.; Sun, C. L.; Zheng, S. H.; Wu, Z. S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 2020, 10, 2000081.

    Article  CAS  Google Scholar 

  64. Liu, Z. C.; Yuan, X. H.; Zhang, S. S.; Wang, J.; Huang, Q. H.; Yu, N. F.; Zhu, Y. S.; Fu, L. J.; Wang, F. X.; Chen, Y. H. et al. Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 2019, 11, 12.

    Article  CAS  Google Scholar 

  65. Dai, X.; Wan, F.; Zhang, L. L.; Cao, H. M.; Niu, Z. Q. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 2019, 17, 143–150.

    Article  Google Scholar 

  66. Zhang, L. S.; Miao, L.; Zhang, B.; Wang, J. S.; Liu, J.; Tan, Q. Y.; Wan, H. Z.; Jiang, J. J. A durable VO2(M)/Zn battery with ultrahigh rate capability enabled by pseudocapacitive proton insertion. J. Mater. Chem. A 2020, 8, 1731–1740.

    Article  CAS  Google Scholar 

  67. Wan, F.; Huang, S.; Cao, H. M.; Niu, Z. Q. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 2020, 14, 6752–6760.

    Article  CAS  Google Scholar 

  68. Yin, B. S.; Zhang, S. W.; Ke, K.; Xiong, T.; Wang, Y. M.; Lim, B. K. D.; Lee, W. S. V.; Wang, Z. B.; Xue, J. M. Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery. Nanoscale 2019, 11, 19723–19728.

    Article  CAS  Google Scholar 

  69. Liu, Y. Z.; Chi, X. W.; Han, Q.; Du, Y. X.; Huang, J. Q.; Liu, Y.; Yang, J. H. α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries. J. Power Sources 2019, 443, 227244.

    Article  CAS  Google Scholar 

  70. Fu, Y. Q.; Wei, Q. L.; Zhang, G. X.; Wang, X. M.; Zhang, J. H.; Hu, Y. F.; Wang, D. N.; Zuin, L.; Zhou, T.; Wu, Y. C. et al. Highperformance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 2018, 8, 1801445.

    Article  CAS  Google Scholar 

  71. Wang, F.; Hu, E. Y.; Sun, W.; Gao, T.; Ji, X.; Fan, X. L.; Han, F. D.; Yang, X. Q.; Xu, K.; Wang, C. S. A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 2018, 11, 3168–3175.

    Article  CAS  Google Scholar 

  72. Lin, Y. T.; Zhou, F. S.; Xie, M. X.; Zhang, S.; Deng, C. V6O13-δ@C nanoscrolls with expanded distances between adjacent shells as a high-performance cathode for a knittable zinc-ion battery. ChemSusChem 2020, 13, 3696–3706.

    Article  CAS  Google Scholar 

  73. Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y. Z.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable synthesis of Ti3C2Tx mxene. Adv. Eng. Mater. 2020, 22, 1901241.

    Article  CAS  Google Scholar 

  74. Li, X. L.; Li, M.; Yang, Q.; Li, H. F.; Xu, H. L.; Chai, Z. F.; Chen, K.; Liu, Z. X.; Tang, Z. J.; Ma, L. T. et al. Phase transition induced unusual electrochemical performance of V2CTx mxene for aqueous zinc hybrid-ion battery. ACS Nano 2020, 14, 541–551.

    Article  CAS  Google Scholar 

  75. Narayanasamy, M.; Kirubasankar, B.; Shi, M. J.; Velayutham, S.; Wang, B.; Angaiah, S.; Yan, C. Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem. Commun. 2020, 56, 6412–6415.

    Article  CAS  Google Scholar 

  76. Shi, M. J.; Wang, B.; Shen, Y.; Jiang, J. T.; Zhu, W. H.; Su, Y. J.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J. 2020, 399, 125627.

    Article  CAS  Google Scholar 

  77. Yang, H. J.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X. W.; He, P.; Zhou, H. S. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem., Int. Ed. 2020, 59, 9377–9381.

    Article  CAS  Google Scholar 

  78. Yang, Q.; Guo, Y.; Yan, B. X.; Wang, C. D.; Liu, Z. X.; Huang, Z. D.; Wang, Y. K.; Li, Y. R.; Li, H. F.; Song, L. et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 2020, 32, 2001755.

    Article  CAS  Google Scholar 

  79. Zhao, R. R.; Yang, Y.; Liu, G. X.; Zhu, R. J.; Huang, J. B.; Chen, Z. Y.; Gao, Z. H.; Chen, X.; Qie, L. Redirected zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv. Funct. Mater. 2020, 31, 2001867.

    Article  CAS  Google Scholar 

  80. Zhao, K. N.; Wang, C. X.; Yu, Y. H.; Yan, M. Y.; Wei, Q. L.; He, P.; Dong, Y. F.; Zhang, Z. Y.; Wang, X. D.; Mai, L. Q. Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 2018, 5, 1800848.

    Article  CAS  Google Scholar 

  81. Kim, J. Y.; Liu, G. C.; Shim, G. Y.; Kim, H.; Lee, J. K. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 2020, 30, 2004210.

    Article  CAS  Google Scholar 

  82. Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Surface and interface issues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578–3606.

    Article  CAS  Google Scholar 

  83. Xia, A. L.; Pu, X. M.; Tao, Y. Y.; Liu, H. M.; Wang, Y. G. Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl. Surf. Sci. 2019, 481, 852–859.

    Article  CAS  Google Scholar 

  84. Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648.

    Article  CAS  Google Scholar 

  85. Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675.

    Article  CAS  Google Scholar 

  86. Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676–11685.

    Article  CAS  Google Scholar 

  87. Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.

    Article  CAS  Google Scholar 

  88. Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.

    Article  CAS  Google Scholar 

  89. Ma, L.; Schroeder, M. A.; Borodin, O.; Pollard, T. P.; Ding, M. S.; Wang, C. S.; Xu, K. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 2020, 5, 743–749.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2020YFA0715004 and 2016YFA0202603), the National Natural Science Foundation of China (Nos. 51832004 and 51521001), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (No. XHT2020-003), and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power (No. 2018B030322001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Luo or Liqiang Mai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Luo, W., Li, M. et al. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 14, 3174–3187 (2021). https://doi.org/10.1007/s12274-021-3392-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3392-1

Keywords

Navigation