Skip to main content
Log in

Induced structural modifications in ZnS nanowires via physical state of catalyst: Highlights of 15R crystal phase

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Peculiar and unique growth mechanisms involved in semiconductor nanowires (NWs) pave the way to the achievement of new crystallographic phases and remarkable material properties, and hence, studying polytypism in semiconductor NWs arouses a strong interest for the next generation of electronic and photonic applications. In this context, the growth of ZnS nanowires has been investigated, as bulk ZnS compound exhibits numerous unstable polytypes at high temperatures, but their stable occurrence is highly anticipated in a nanowire due to its special quasi-dimensional shape and growth modes. In this work, the idea is to provide a change in the growth mechanism via the physical state of catalyst droplet (liquid or solid) and hence, study the induced structural modifications in ZnS nanowires. The HRTEM images of VLS (via liquid alloyed catalyst) grown ZnS NWs show periodic stacking faults, which is precisely identified as a stacking sequence of cubic or hexagonal individual planes leading to an astonishing 15R crystal polymorph. This crystallographic phase is observed for the first time in nanowires. Contrastingly, NWs grown with VSS (via solid catalyst) show crystal polytypes of zinc blende and wurtzite. We calculate and discuss the role of cohesive energies in the formation of such ZnS polytypes. Further, we present the selection rules for the crystallization of such 15R structure in NWs and discuss the involved VLS and VSS growth mechanisms leading to the formation of different crystal phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jie, J. S.; Zhang, W.; Bello, I.; Lee, C. S.; Lee, S. T. One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications. Nano Today 2010, 5, 313–336.

    Article  CAS  Google Scholar 

  2. Pauzauskie, P. J.; Yang, P. Nanowire photonics. Mater. Today 2006, 9, 36–45.

    Article  CAS  Google Scholar 

  3. Güniat, L.; Caroff, P.; Morral, A. F. I. Vapor phase growth of semiconductor nanowires: Key developments and open questions. Chem. Rev. 2019, 119, 8958–8971.

    Article  Google Scholar 

  4. Laferrière, P.; Yeung, E.; Giner, L.; Haffouz, S.; Lapointe, J.; Aers, G. C.; Poole, P. J.; Williams, R. L.; Dalacu, D. Multiplexed single-photon source based on multiple quantum dots embedded within a single nanowire. Nano Lett. 2020, 20, 3688–3693.

    Article  Google Scholar 

  5. Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M. C.; Lehmann, S.; Hofmann, S.; Dick, K. A.; Ross, F. M. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016, 531, 317–322.

    Article  CAS  Google Scholar 

  6. Glas, F.; Harmand, J. C.; Patriarche, G. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101.

    Article  Google Scholar 

  7. Mardix, S. Polytypism: A controlled thermodynamic phenomenon. Phys. Rev. B 1986, 33, 8677–8684.

    Article  CAS  Google Scholar 

  8. Engel, G. E.; Needs, R. J. Total energy calculations on zinc sulphide polytypes. J. Phys. Condens. Matter 1990, 2, 367–376.

    Article  CAS  Google Scholar 

  9. Ortiz, A. L.; Sánchez-Bajo, F.; Cumbrera, F. L.; Guiberteau, F. The prolific polytypism of silicon carbide. J. Appl. Crystall. 2013, 46, 242–247.

    Article  CAS  Google Scholar 

  10. Caroff, P.; Dick, K. A.; Johansson, J.; Messing, M. E.; Deppert, K.; Samuelson, L. Controlled polytypic and twin-plane superlattices in III-V nanowires. Nat. Nanotechnol. 2009, 4, 50–55.

    Article  CAS  Google Scholar 

  11. Hao, Y. F.; Meng, G. W.; Wang, Z. L.; Ye, C. H.; Zhang, L. D. Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth. Nano Lett. 2006, 6, 1650–1655.

    Article  CAS  Google Scholar 

  12. Johansson, J.; Dick, K. A.; Caroff, P.; Messing, M. E.; Bolinsson, J.; Deppert, K.; Samuelson, L. Diameter dependence of the wurtzite-zinc blende transition in inas nanowires. J. Phys. Chem. C 2010, 114, 3837–3842.

    Article  CAS  Google Scholar 

  13. Priante, G.; Harmand, J. C.; Patriarche, G.; Glas, F. Random stacking sequences in III-V nanowires are correlated. Phys. Rev. B 2014, 89, 241301.

    Article  Google Scholar 

  14. Lopez, F. J.; Hemesath, E. R.; Lauhon, L. J. Ordered stacking fault arrays in silicon nanowires. Nano Lett. 2009, 9, 2774–2779.

    Article  CAS  Google Scholar 

  15. Biswas, S.; Doherty, J.; Majumdar, D.; Ghoshal, T.; Rahme, K.; Conroy, M.; Singha, A.; Morris, M. A.; Holmes, J. D. Diameter-controlled germanium nanowires with lamellar twinning and polytypes. Chem. Mater. 2015, 27, 3408–3416.

    Article  CAS  Google Scholar 

  16. Dheeraj, D. L.; Patriarche, G.; Zhou, H.; Hoang, T. B.; Moses, A. F.; Grønsberg, S.; van Helvoort, A. T. J.; Fimland, B. O.; Weman, H. Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. Nano Lett. 2008, 8, 4459–4463.

    Article  CAS  Google Scholar 

  17. Jiang, Y.; Meng, X. M.; Liu, J.; Hong, Z. R.; Lee, C. S.; Lee, S. T. ZnS nanowires with wurtzite polytype modulated structure. Adv. Mater. 2003, 15, 1195–1198.

    Article  CAS  Google Scholar 

  18. Liu, X. H.; Wang, D. W. Kinetically-induced hexagonality in chemically grown silicon nanowires. Nano Res. 2009, 2, 575–582.

    Article  CAS  Google Scholar 

  19. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Article  CAS  Google Scholar 

  20. Dubrovskii, V. G.; Cirlin, G. E.; Soshnikov, I. P.; Tonkikh, A. A.; Sibirev, N. V.; Samsonenko, Y. B.; Ustinov, V. M. Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment. Phys. Rev. B 2005, 71, 205325.

    Article  Google Scholar 

  21. Harmand, J. C.; Glas, F.; Patriarche, G. Growth kinetics of a single InP1−xAsx nanowire. Phys. Rev. B 2010, 81, 235436.

    Article  Google Scholar 

  22. Fang, X. S.; Zhai, T. Y.; Gautam, U. K.; Li, L.; Wu, L. M.; Bando, Y.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 2011, 56, 175–287.

    Article  CAS  Google Scholar 

  23. Premkumar, S.; Nataraj, D.; Bharathi, G.; Ramya, S.; Thangadurai, T. D. Highly responsive ultraviolet sensor based on ZnS quantum dot solid with enhanced photocurrent. Sci. Rep. 2019, 9, 18704.

    Article  CAS  Google Scholar 

  24. Wang, Z. W.; Daemen, L. L.; Zhao, Y. S.; Zha, C. S.; Downs, R. T.; Wang, X. D.; Wang, Z. L.; Hemley, R. J. Morphology-tuned wurtzite-type ZnS nanobelts. Nat. Mater. 2005, 4, 922–927.

    Article  CAS  Google Scholar 

  25. Akizuki, M. Investigation of phase transition of natural ZnS minerals by high resolution electron microscopy. Amer. Mineral. 1981, 66, 1006–1012.

    CAS  Google Scholar 

  26. Boutaiba, F.; Belabbes, A.; Ferhat, M.; Bechstedt, F. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study. Phys. Rev. B 2014, 89, 245308.

    Article  Google Scholar 

  27. Zagorac, D.; Schön, J. C.; Zagorac, J.; Jansen, M. Theoretical investigations of novel zinc oxide polytypes and in-depth study of their electronic properties. RSC Adv. 2015, 5, 25929–25935.

    Article  CAS  Google Scholar 

  28. Takeuchi, S.; Suzuki, K.; Maeda, K.; Iwanaga, H. Stacking-fault energy of II–VI compounds. Philos. Mag. A 1985, 50, 171–178.

    Article  Google Scholar 

  29. Guo, Y. G.; Wang, Q.; Kawazoe, Y.; Jena, P. A new silicon phase with direct band gap and novel optoelectronic properties. Sci. Rep. 2015, 5, 14342.

    Article  CAS  Google Scholar 

  30. Fissel, A.; Kaiser, U.; Schröter, B.; Richter, W.; Bechstedt, F. MBE growth and properties of SiC multi-quantum well structures. Appl. Surf. Sci. 2001, 184, 37–42.

    Article  CAS  Google Scholar 

  31. Akopian, N.; Patriarche, G.; Liu, L.; Harmand, J. C.; Zwiller, V. Crystal phase quantum dots. Nano Lett. 2010, 10, 1198–1201.

    Article  CAS  Google Scholar 

  32. Xue, M. F.; Li, M.; Huang, Y. S.; Chen, R. K.; Li, Y. L.; Wang, J. Y.; Xing, Y. J.; Chen, J. J.; Yan, H. G.; Xu, H. Q. et al. Observation and ultrafast dynamics of inter-sub-band transition in InAs twinning superlattice nanowires. Adv. Mater. 2020, 32, 2004120.

    Article  CAS  Google Scholar 

  33. Persson, A. I.; Larsson, M. W.; Stenström, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 2004, 3, 677–681.

    Article  CAS  Google Scholar 

  34. Sue, Y. S.; Pan, K. Y.; Wei, D. H. Optoelectronic and photocatalytic properties of zinc sulfide nanowires synthesized by vapor-liquid-solid process. Appl. Surf. Sci. 2019, 471, 435–444.

    Article  CAS  Google Scholar 

  35. Yue, G. H.; Yan, P. X.; Yan, D.; Fan, X. Y.; Wang, M. X.; Qu, D. M.; Liu, J. Z. Hydrothermal synthesis of single-crystal ZnS nanowires. Appl. Phys. A 2006, 84, 409–412.

    Article  CAS  Google Scholar 

  36. Thombare, S. V.; Marshall, A. F.; McIntyre, P. C. Size effects in vapor-solid-solid Ge nanowire growth with a Ni-based catalyst. J. Appl. Phys. 2012, 112, 054325.

    Article  Google Scholar 

  37. Zannier, V.; Grillo, V.; Rubini, S. Diameter-dependent morphology of vapour-solid-solid grown ZnSe nanowires. J. Phys. D Appl. Phys. 2014, 47, 394005.

    Article  Google Scholar 

  38. Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.

    Article  CAS  Google Scholar 

  39. Liang, Y.; Xu, H. Y.; Hark, S. K. Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J. Phys. Chem. C 2010, 114, 8343–8347.

    Article  CAS  Google Scholar 

  40. Geng, B. Y.; Liu, X. W.; Du, Q. B.; Wei, X. W.; Zhang, L. D. Structure and optical properties of periodically twinned ZnS nanowires. Appl. Phys. Lett. 2006, 88, 163104.

    Article  Google Scholar 

  41. Biswas, S.; Kar, S. Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: A simple solvothermal approach. Nanotechnology 2008, 19, 045710.

    Article  Google Scholar 

  42. Rothman, A.; Forsht, T.; Danieli, Y.; Popovitz-Biro, R.; Rechav, K.; Houben, L.; Joselevich, E. Guided growth of horizontal ZnS nanowires on flat and faceted sapphire surfaces. J. Phys. Chem. C 2018, 122, 12413–12420.

    Article  CAS  Google Scholar 

  43. Liang, Y.; Liang, H.; Xiao, X. D.; Hark, S. The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection. J. Mater. Chem. 2012, 22, 1199–1205.

    Article  CAS  Google Scholar 

  44. Ramsdell, L. S. Studies on silicon carbide. Amer. Mineral. 1947, 32, 64–82.

    CAS  Google Scholar 

  45. Gibbon, D. L. Electron diffraction effects in silicon carbide. I. Pure polytypes. II. Whiskers. J. Appl. Crystallogr. 1971, 4, 95–103.

    Article  CAS  Google Scholar 

  46. Frondel, C.; Palache, C. Three new polymorphs of zinc sulfide. Science 1948, 107, 602.

    Article  CAS  Google Scholar 

  47. Glas, F. A simple calculation of energy changes upon stacking fault formation or local crystalline phase transition in semiconductors. J. Appl. Phys. 2008, 104, 093520.

    Article  Google Scholar 

  48. Zagorac, D.; Zagorac, J.; Schön, J. C.; Stojanovic, N.; Matovic, B. ZnO/ZnS (hetero)structures: Ab initio investigations of polytypic behavior of mixed ZnO and ZnS compounds. Acta Cryst. Sect. B 2018, 74, 628–642.

    Article  CAS  Google Scholar 

  49. Zhdanov, G. S. The numerical symbol of close packing of spheres and its application in the theory of close packings. Compt. Rend. Acad. Sci. URSS 1945, 48, 39–42.

    CAS  Google Scholar 

  50. Johansson, J.; Bolinsson, J.; Ek, M.; Caroff, P.; Dick, K. A. Combinatorial approaches to understanding polytypism in III–V nanowires. ACS Nano 2012, 6, 6142–6149.

    Article  CAS  Google Scholar 

  51. Harmand, J. C.; Patriarche, G.; Glas, F.; Panciera, F.; Florea, I.; Maurice, J. L.; Travers, L.; Ollivier, Y. Atomic step flow on a nanofacet. Phys. Rev. Lett. 2018, 121, 166101.

    Article  CAS  Google Scholar 

  52. Kim, Y.; Im, H. S.; Park, K.; Kim, J.; Ahn, J. P.; Yoo, S. J.; Kim, J. G.; Park, J. Bent polytypic ZnSe and CdSe nanowires probed by photoluminescence. Small 2017, 13, 1603695.

    Article  Google Scholar 

  53. Goktas, N. I.; Sokolovskii, A.; Dubrovskii, V. G.; LaPierre, R. R. Formation mechanism of twinning superlattices in doped GaAs nanowires. Nano Lett. 2020, 20, 3344–3351.

    Article  Google Scholar 

  54. Yu, H. L.; Wang, Q.; Yang, L.; Dai, B.; Zhu, J. Q.; Han, J. C. Ultraviolet-visible light photoluminescence induced by stacking faults in 3C–SiC nanowires. Nanotechnology 2019, 30, 235601.

    Article  CAS  Google Scholar 

  55. Dubrovskii, V. G.; Sibirev, N. V.; Harmand, J. C.; Glas, F. Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 2008, 78, 235301.

    Article  Google Scholar 

  56. Panciera, F.; Baraissov, Z.; Patriarche, G.; Dubrovskii, V. G.; Glas, F.; Travers, L.; Mirsaidov, U.; Harmand, J. C. Phase selection in self-catalyzed GaAs nanowires. Nano Lett. 2020, 20, 1669–1675.

    Article  CAS  Google Scholar 

  57. Johansson, J.; Zanolli, Z.; Dick, K. A. Polytype attainability in III–V semiconductor nanowires. Cryst. Growth Des. 2016, 16, 371–379.

    Article  CAS  Google Scholar 

  58. Sun, Q.; Pan, D.; Li, M.; Zhao, J.; Chen, P.; Lu, W.; Zou, J. In situ TEM observation of the vapor-solid-solid growth of \(< 00\overline 1 >\) InAs nanowires. Nanoscale 2020, 12, 11711–11717.

    Article  CAS  Google Scholar 

  59. Wen, C. Y.; Reuter, M. C.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 2009, 326, 1247–1250.

    Article  CAS  Google Scholar 

  60. Rueda-Fonseca, P.; Orrù, M.; Bellet-Amalric, E.; Robin, E.; Den Hertog, M.; Genuist, Y.; André, R.; Tatarenko, S.; Cibert, J. Diffusion-driven growth of nanowires by low-temperature molecular beam epitaxy. J. Appl. Phys. 2016, 119, 164303.

    Article  Google Scholar 

  61. Simon, H.; Krekeler, T.; Schaan, G.; Mader, W. Metal-seeded growth mechanism of ZnO nanowires. Cryst. Growth Des. 2013, 13, 572–580.

    Article  CAS  Google Scholar 

  62. Okamoto, H.; Massalski, T. B. The Au-S (gold-sulfur) system. Bull. Alloy Phase Diagrams 1985, 6, 518–519.

    Article  CAS  Google Scholar 

  63. Ishikawa, K.; Isonaga, T.; Wakita, S.; Suzuki, Y. Structure and electrical properties of Au2S. Solid State Ionics 1995, 79, 60–66.

    Article  CAS  Google Scholar 

  64. Okamoto, H.; Massalski, T. B. The Au-Zn (gold-zinc) system. Bull. Alloy Phase Diagrams 1989, 10, 59–69.

    Article  CAS  Google Scholar 

  65. Cui, H.; Lü, Y. Y.; Yang, G. W.; Chen, Y. M.; Wang, C. X. Step-flow kinetics model for the vapor-solid-solid si nanowires growth. Nano Lett. 2015, 15, 3640–3645.

    Article  CAS  Google Scholar 

  66. Rueda-Fonseca, P.; Bellet-Amalric, E.; Vigliaturo, R.; Den Hertog, M.; Genuist, Y.; André, R.; Robin, E.; Artioli, A.; Stepanov, P.; Ferrand, D. et al. Structure and morphology in diffusion-driven growth of nanowires: The case of ZnTe. Nano Lett. 2014, 14, 1877–1883.

    Article  CAS  Google Scholar 

  67. Maliakkal, C. B.; Jacobsson, D.; Tornberg, M.; Persson, A. R.; Johansson, J.; Wallenberg, R.; Dick, K. A. In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth. Nat. Commun. 2019, 10, 4577.

    Article  CAS  Google Scholar 

  68. Arbiol, J.; Kalache, B.; Cabarrocas, P. R. I.; Morante, J. R.; Morral, A. F. I. Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour-solid-solid mechanism. Nanotechnology 2007, 18, 305606.

    Article  Google Scholar 

  69. Tuan, H. Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A. Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals. Chem. Mater. 2005, 17, 5705–5711.

    Article  CAS  Google Scholar 

  70. Dubrovskii, V. G.; Cirlin, G. E.; Sibirev, N. V.; Jabeen, F.; Harmand, J. C.; Werner, P. New mode of vapor-liquid-solid nanowire growth. Nano Lett. 2011, 11, 1247–1253.

    Article  CAS  Google Scholar 

  71. Johansson, J.; Karlsson, L. S.; Dick, K. A.; Bolinsson, J.; Wacaser, B. A.; Deppert, K.; Samuelson, L. Effects of supersaturation on the crystal structure of gold seeded III–V nanowires. Cryst. Growth Des. 2009, 9, 766–773.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussions with Dr. Frank Glas, C2N laboratory, France. S. K. would like to thank Ecole Doctorale-Interfaces, Université Paris-Saclay, UVSQ for the doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sumit Kumar or Vincent Sallet.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Fossard, F., Amiri, G. et al. Induced structural modifications in ZnS nanowires via physical state of catalyst: Highlights of 15R crystal phase. Nano Res. 15, 377–385 (2022). https://doi.org/10.1007/s12274-021-3487-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3487-8

Keywords

Navigation