Skip to main content
Log in

Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, flexible pressure sensors have gained substantial research interest in bioelectronics because they can monitor the conditions of various organs, enable early diagnosis of diseases, and provide precise medical treatment by applying them to various parts of the body. In particular, inorganic materials, metal and carbon-based materials are broadly used in novel structured pressure sensors from wearable devices to implantable devices. With the excellent electronic properties, distinctive morphologies, and remarkable mechanical and chemical stability of these materials, it is expected that these flexible pressure sensors can be the basis for new methods for human healthcare. This article covers an extensive review of the inorganic, metal and carbon-based flexible pressure sensor design strategies and sensing mechanisms studied in recent years for diverse applications such as tactile sensors, arterial pulse sensors, intracranial pressure sensors, intraocular pressure sensors, and bladder pressure sensors. Each section provides an overview by introducing the recent progress in flexible pressure sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, L. Y.; Tee, B. C. K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H. S. P.; McConnell, M. V.; Bao, Z. N. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 5028.

    Article  CAS  Google Scholar 

  2. Chu, M.; Nguyen, T.; Pandey, V.; Zhou, Y. X.; Pham, H. N.; Bar-Yoseph, R.; Radom-Aizik, S.; Jain, R.; Cooper, D. M.; Khine, M. J. N. Respiration rate and volume measurements using wearable strain sensors. npj Digital Med. 2019, 2, 8.

    Article  Google Scholar 

  3. Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019, 19, 1143–1150.

    Article  CAS  Google Scholar 

  4. Luo, N. Q.; Dai, W. X.; Li, C. L.; Zhou, Z. Q.; Lu, L. Y.; Poon, C. C. Y.; Chen, S. C.; Zhang, Y. T.; Zhao, N. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 2016, 26, 1178–1187.

    Article  CAS  Google Scholar 

  5. Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

    Article  CAS  Google Scholar 

  6. Boutry, C. M.; Kaizawa, Y.; Schroeder, B. C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. N. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 2018, 1, 314–321.

    Article  Google Scholar 

  7. Huang, W. J.; Dai, K.; Zhai, Y.; Liu, H.; Zhan, P. F.; Gao, J. C.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Appl. Mater. Interfaces 2017, 9, 42266–42277.

    Article  CAS  Google Scholar 

  8. Jeong, Y.; Park, J.; Lee, J.; Kim, K.; Park, I. Ultrathin, biocompatible, and flexible pressure sensor with a wide pressure range and its biomedical application. ACS Sens. 2020, 5, 481–489.

    Article  CAS  Google Scholar 

  9. Nathan, A.; Ahnood, A.; Cole, M. T.; Lee, S.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A. et al. Flexible electronics: The next ubiquitous platform. Proc. IEEE 2012, 100, 1486–1517.

    Article  Google Scholar 

  10. Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.

    Article  CAS  Google Scholar 

  11. MacDonald, W. A.; Looney, M. K.; MacKerron, D.; Eveson, R.; Adam, R.; Hashimoto, K.; Rakos, K. Latest advances in substrates for flexible electronics. J. Soc. Inf. Dis. 2007, 15, 1075–1083.

    Article  CAS  Google Scholar 

  12. Song, K. I.; Seo, H.; Seong, D.; Kim, S.; Yu, K. J.; Kim, Y. C.; Kim, J.; Kwon, S. J.; Han, H. S.; Youn, I. et al. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nat. Commun. 2020, 11, 4195.

    Article  Google Scholar 

  13. Chiang, C. H.; Won, S. M.; Orsborn, A. L.; Yu, K. J.; Trumpis, M.; Bent, B.; Wang, C.; Xue, Y. G.; Min, S.; Woods, V. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 2020, 12, eaay4682.

    Article  Google Scholar 

  14. Mishra, S.; Kim, Y. S.; Intarasirisawat, J.; Kwon, Y. T.; Lee, Y.; Mahmood, M.; Lim, H. R.; Herbert, R.; Yu, K. J.; Ang, C. S. et al. Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci. Adv. 2020, 6, eaay1729.

    Article  CAS  Google Scholar 

  15. Song, E. M.; Chiang, C. H.; Li, R.; Jin, X.; Zhao, J. N.; Hill, M.; Xia, Y.; Li, L. Z.; Huang, Y. M.; Won, S. M. et al. Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proc. Natl. Acad. Sci. USA 2019, 116, 15398–15406.

    Article  CAS  Google Scholar 

  16. Chun, S.; Kim, D. W.; Kim, J.; Pang, C. A transparent, glue-free, skin-attachable graphene pressure sensor with micropillars for skin-elasticity measurement. Nanotechnology 2019, 30, 335501.

    Article  CAS  Google Scholar 

  17. Kang, S.; Cho, S.; Shanker, R.; Lee, H.; Park, J.; Um, D. S.; Lee, Y.; Ko, H. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv. 2018, 4, eaas8772.

    Article  CAS  Google Scholar 

  18. Song, E. M.; Li, R.; Jin, X.; Du, H. N.; Huang, Y. M.; Zhang, J. Z.; Xia, Y.; Fang, H.; Lee, Y. K.; Yu, K. J. et al. Ultrathin trilayer assemblies as long-lived barriers against water and ion penetration in flexible bioelectronic systems. ACS Nano 2018, 12, 10317–10326.

    Article  CAS  Google Scholar 

  19. Yu, K. J.; Yan, Z.; Han, M. D.; Rogers, J. A. Inorganic semiconducting materials for flexible and stretchable electronics. npj Flex. Electron. 2017, 1, 4.

    Article  CAS  Google Scholar 

  20. Kim, S.; Amjadi, M.; Lee, T. I.; Jeong, Y.; Kwon, D.; Kim, M. S.; Kim, K.; Kim, T. S.; Oh, Y. S.; Park, I. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS Appl. Mater. Interfaces 2019, 11, 23639–23648.

    Article  CAS  Google Scholar 

  21. Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241–245.

    Article  CAS  Google Scholar 

  22. Hyun, J. K.; Zhang, S. X.; Lauhon, L. J. Nanowire heterostructures. Ann. Rev. Mater. Res. 2013, 43, 451–479.

    Article  CAS  Google Scholar 

  23. Cohen-Karni, T.; Lieber, C. M. Nanowire nanoelectronics: Building interfaces with tissue and cells at the natural scale of biology. Pure Appl. Chem. 2013, 85, 883–901.

    Article  CAS  Google Scholar 

  24. Koh, W. K.; Saudari, S. R.; Fafarman, A. T.; Kagan, C. R.; Murray, C. B. Thiocyanate-capped PbS nanocubes: Ambipolar transport enables quantum dot based circuits on a flexible substrate. Nano Lett. 2011, 11, 4764–4767.

    Article  CAS  Google Scholar 

  25. Son, J. S.; Lee, J. S.; Shevchenko, E. V.; Talapin, D. V. Magnet-in-the-semiconductor nanomaterials: High electron mobility in all-inorganic arrays of FePt/CdSe and FePt/CdS core-shell heterostructures. J. Phys. Chem. Lett. 2013, 4, 1918–1923.

    Article  CAS  Google Scholar 

  26. Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 2011, 477, 45–53.

    Article  CAS  Google Scholar 

  27. Fang, H.; Zhao, J. N.; Yu, K. J.; Song, E. M.; Farimani, A. B.; Chiang, C. H.; Jin, X.; Xue, Y. G.; Xu, D.; Du, W. B. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl. Acad. Sci. USA 2016, 113, 11682–11687.

    Article  CAS  Google Scholar 

  28. Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348–352.

    Article  CAS  Google Scholar 

  29. Dutta, P.; Rathi, M.; Zheng, N.; Gao, Y.; Yao, Y.; Martinez, J.; Ahrenkiel, P.; Selvamanickam, V. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 2014, 105, 092104.

    Article  CAS  Google Scholar 

  30. Viventi, J.; Kim, D. H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y. S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S. W.; Vanleer, A. C. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599–1605.

    Article  CAS  Google Scholar 

  31. Xu, L. Z.; Gutbrod, S. R.; Bonifas, A. P.; Su, Y. W.; Sulkin, M. S.; Lu, N. S.; Chung, H. J.; Jang, K. I.; Liu, Z. J.; Ying, M. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 2014, 5, 3329.

    Article  CAS  Google Scholar 

  32. Dagdeviren, C.; Su, Y. W.; Joe, P.; Yona, R.; Liu, Y. H.; Kim, Y. S.; Huang, Y. A.; Damadoran, A. R.; Xia, J.; Martin, L. W. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496.

    Article  CAS  Google Scholar 

  33. Park, D. Y.; Joe, D. J.; Kim, D. H.; Park, H.; Han, J. H.; Jeong, C. K.; Park, H.; Park, J. G.; Joung, B.; Lee, K. J. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 2017, 29, 1702308.

    Article  Google Scholar 

  34. Zhu, B. W.; Ling, Y. Z.; Yap, L. W.; Yang, M. J.; Lin, F. G.; Gong, S.; Wang, Y.; An, T. C.; Zhao, Y. M.; Cheng, W. L. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl. Mater. Interfaces 2019, 11, 29014–29021.

    Article  CAS  Google Scholar 

  35. Li, X.; Fan, Y. J.; Li, H. Y.; Cao, J. W.; Xiao, Y. C.; Wang, Y.; Liang, F.; Wang, H. L.; Jiang, Y.; Wang, Z. L. et al. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor. ACS Nano 2020, 14, 9605–9612.

    Article  CAS  Google Scholar 

  36. Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 25, 4338–4372.

    Article  CAS  Google Scholar 

  37. Xu, K. C.; Lu, Y. Y.; Takei, K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 2019, 4, 1800628.

    Article  CAS  Google Scholar 

  38. Joung, Y. H. Development of implantable medical devices: From an engineering perspective. Int. Neurourol. J. 2013, 17, 98–106.

    Article  Google Scholar 

  39. Bauer, S.; Bauer-Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwödiauer, R. 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Adv. Mater. 2014, 26, 149–162.

    Article  CAS  Google Scholar 

  40. Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. A. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6038.

    Article  CAS  Google Scholar 

  41. Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. A. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    Article  CAS  Google Scholar 

  42. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  CAS  Google Scholar 

  43. Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970.

    Article  CAS  Google Scholar 

  44. Lam Po Tang, S. Recent developments in flexible wearable electronics for monitoring applications. Trans. Inst. Meas. Control 2007, 29, 283–300.

    Article  Google Scholar 

  45. Joo, Y.; Byun, J.; Seong, N.; Ha, J.; Kim, H.; Kim, S.; Kim, T.; Im, H.; Kim, D.; Hong, Y. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 2015, 7, 6208–6215.

    Article  CAS  Google Scholar 

  46. Gao, L.; Zhu, C. X.; Li, L.; Zhang, C. W.; Liu, J. H.; Yu, H. D.; Huang, W. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 25034–25042.

    Article  CAS  Google Scholar 

  47. Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

    Article  CAS  Google Scholar 

  48. Lee, D.; Lee, H.; Jeong, Y.; Ahn, Y.; Nam, G.; Lee, Y. Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles. Adv. Mater. 2016, 25, 9364–9369.

    Article  CAS  Google Scholar 

  49. Xu, M. G.; Reekie, L.; Chow, Y. T.; Dakin, J. P. Optical in-fibre grating high pressure sensor. Electron. Lett. 1993, 29, 398–399.

    Article  Google Scholar 

  50. Totsu, K.; Haga, Y.; Esashi, M. Ultra-miniature fiber-optic pressure sensor using white light interferometry. J. Micromech. Microeng. 2005, 15, 71–75.

    Article  Google Scholar 

  51. Zhu, Y. Z.; Wang, A. B. Miniature fiber-optic pressure sensor. IEEE Photonics Technol. Lett. 2005, 17, 447–449.

    Article  Google Scholar 

  52. Yu, Q. X.; Zhou, X. L. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 2011, 1, 72–83.

    Article  CAS  Google Scholar 

  53. Fang, H.; Yu, K. J.; Gloschat, C.; Yang, Z. J.; Song, E. M.; Chiang, C. H.; Zhao, J. N.; Won, S. M.; Xu, S. Y.; Trumpis, M. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 2017, 1, 0038.

    CAS  Google Scholar 

  54. Song, E. M.; Fang, H.; Jin, X.; Zhao, J. N.; Jiang, C. S.; Yu, K. J.; Zhong, Y. D.; Xu, D.; Li, J. H.; Fang, G. H. et al. Thin, transferred layers of silicon dioxide and silicon nitride as water and ion barriers for implantable flexible electronic systems. Adv. Electron. Mater. 2017, 3, 1700077.

    Article  CAS  Google Scholar 

  55. Yin, M.; Borton, D. A.; Aceros, J.; Patterson, W. R.; Nurmikko, A. V. A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 115–128.

    Article  Google Scholar 

  56. Bazaka, K.; Jacob, M. V. Implantable devices: Issues and challenges. Electronics 2013, 2, 1–34.

    Article  CAS  Google Scholar 

  57. Li, J. H.; Song, E. M.; Chiang, C. H.; Yu, K. J.; Koo, J.; Du, H. N.; Zhong, Y. S.; Hill, M.; Wang, C.; Zhang, J. Z. et al. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proc. Natl. Acad. Sci. USA 2018, 115, E9542–E9549.

    Article  CAS  Google Scholar 

  58. Li, J. H.; Li, R.; Chiang, C. H.; Zhong, Y. S.; Shen, H. X.; Song, E. M.; Hill, M.; Won, S. M.; Yu, K. J.; Baek, J. M. et al. Ultrathin, high capacitance capping layers for silicon electronics with conductive interconnects in flexible, long-lived bioimplants. Adv. Mater. Technol. 2020, 5, 1900800.

    Article  CAS  Google Scholar 

  59. Kang, K.; Cho, Y.; Yu, K. J. Novel Nano-materials and nano-fabrication techniques for flexible electronic systems. Micromachines 2018, 9, 263.

    Article  Google Scholar 

  60. Shin, J.; Yan, Y.; Bai, W. B.; Xue, Y. G.; Gamble, P.; Tian, L. M.; Kandela, I.; Haney, C. R.; Spees, W.; Lee, Y. et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 2019, 3, 37–46.

    Article  CAS  Google Scholar 

  61. Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H. Y.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76.

    Article  CAS  Google Scholar 

  62. Yang, Q. S.; Lee, S.; Xue, Y. G.; Yan, Y.; Liu, T. L.; Kang, S. K.; Lee, Y. J.; Lee, S. H.; Seo, M. H.; Lu, D. et al. Materials, mechanics designs, and bioresorbable multisensor platforms for pressure monitoring in the intracranial space. Adv. Funct. Mater. 2020, 30, 1910718.

    Article  CAS  Google Scholar 

  63. Lu, D.; Yan, Y.; Deng, Y. J.; Yang, Q. S.; Zhao, J.; Seo, M. H.; Bai, W. B.; MacEwan, M. R.; Huang, Y. G.; Ray, W. Z. et al. Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv. Funct. Mater. 2020, 30, 2003754.

    Article  CAS  Google Scholar 

  64. Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782–791.

    Article  CAS  Google Scholar 

  65. Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. Highperformance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.

    Article  CAS  Google Scholar 

  66. Hwang, S. W.; Kim, D. H.; Tao, H.; Kim, T. I.; Kim, S.; Yu, K. J.; Panilaitis, B.; Jeong, J. W.; Song, J. K.; Omenetto, F. G. et al. Materials and fabrication processes for transient and bioresorbable highperformance electronics. Adv. Funct. Mater. 2013, 23, 4087–4093.

    Article  CAS  Google Scholar 

  67. Lu, L. Y.; Yang, Z. J.; Meacham, K.; Cvetkovic, C.; Corbin, E. A.; Vázquez-Guardado, A.; Xue, M. T.; Yin, L.; Boroumand, J.; Pakeltis, G. et al. Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Adv. Energy Mater. 2018, 8, 1703035.

    Article  CAS  Google Scholar 

  68. Zheng, Q.; Zou, Y.; Zhang, Y. L.; Liu, Z.; Shi, B. J.; Wang, X. X.; Jin, Y. M.; Ouyang, H.; Li, Z.; Wang, Z. L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2016, 2, e1501478.

    Article  CAS  Google Scholar 

  69. Li, Y. L.; Maciel, D.; Rodrigues, J.; Shi, X. Y.; Tomás, H. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem. Rev. 2015, 115, 8564–8608.

    Article  CAS  Google Scholar 

  70. Park, J.; Kim, J. K.; Patil, S. J.; Park, J. K.; Park, S. A.; Lee, D. W. A wireless pressure sensor integrated with a biodegradable polymer stent for biomedical applications. Sensors 2016, 16, 809.

    Article  CAS  Google Scholar 

  71. Hosseini, E. S.; Manjakkal, L.; Shakthivel, D.; Dahiya, R. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl. Mater. Interfaces 2020, 12, 9008–9016.

    Article  CAS  Google Scholar 

  72. Choi, Y. S.; Koo, J.; Lee, Y. J.; Lee, G.; Avila, R.; Ying, H. Z.; Reeder, J.; Hambitzer, L.; Im, K.; Kim, J. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 2020, 30, 2000941.

    Article  CAS  Google Scholar 

  73. Koo, J.; MacEwan, M. R.; Kang, S. K.; Won, S. M.; Stephen, M.; Gamble, P.; Xie, Z. Q.; Yan, Y.; Chen, Y. Y.; Shin, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 2018, 24, 1830–1836.

    Article  CAS  Google Scholar 

  74. Lee, Y. K.; Yu, K. J.; Song, E.; Barati Farimani, A.; Vitale, F.; Xie, Z. Q.; Yoon, Y.; Kim, Y.; Richardson, A.; Luan, H. W. et al. Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano 2017, 11, 12562–12572.

    Article  CAS  Google Scholar 

  75. Li, C. Y.; Wu, P. M.; Shutter, L. A.; Narayan, R. K. Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement. Appl. Phys. Lett. 2010, 96, 053502.

    Article  CAS  Google Scholar 

  76. Warty, R.; Tofighi, M. R.; Kawoos, U.; Rosen, A. Characterization of implantable antennas for intracranial pressure monitoring: Reflection by and transmission through a scalp phantom. IEEE Trans. Microw. Theory Tech. 2008, 56, 2366–2376.

    Article  Google Scholar 

  77. Won, S. M.; Wang, H. L.; Kim, B. H.; Lee, K.; Jang, H.; Kwon, K.; Han, M. D.; Crawford, K. E.; Li, H. B.; Lee, Y. C. et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 2019, 13, 10972–10979.

    Article  CAS  Google Scholar 

  78. Yang, S. X.; Lu, N. S. Gauge factor and stretchability of silicon-on-polymer strain gauges. Sensors 2013, 13, 8577–8594.

    Article  CAS  Google Scholar 

  79. Ying, M.; Bonifas, A. P.; Lu, N. S.; Su, Y. W.; Li, R.; Cheng, H. Y.; Ameen, A.; Huang, Y. G.; Rogers, J. A. Silicon nanomembranes for fingertip electronics. Nanotechnology 2012, 23, 344004.

    Article  CAS  Google Scholar 

  80. Lee, Y. K.; Yu, K. J.; Kim, Y.; Yoon, Y.; Xie, Z. Q.; Song, E. M.; Luan, H. W.; Feng, X.; Huang, Y. G.; Rogers, J. A. Kinetics and chemistry of hydrolysis of ultrathin, thermally grown layers of silicon oxide as biofluid barriers in flexible electronic systems. ACS Appl. Mater. Interfaces 2017, 9, 42633–42638.

    Article  CAS  Google Scholar 

  81. Lee, S. P.; Ha, G.; Wright, D. E.; Ma, Y. J.; Sen-Gupta, E.; Haubrich, N. R.; Branche, P. C.; Li, W. H.; Huppert, G. L.; Johnson, M. et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. npj Digital Med. 2018, 1, 2.

    Article  Google Scholar 

  82. Won, S. M.; Song, E. M.; Zhao, J. N.; Li, J. H.; Rivnay, J.; Rogers, J. A. Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 2018, 30, 1800534.

    Article  CAS  Google Scholar 

  83. Lee, S.; Inoue, Y.; Kim, D.; Reuveny, A.; Kuribara, K.; Yokota, T.; Reeder, J.; Sekino, M.; Sekitani, T.; Abe, Y. et al. A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel. Nat. Commun. 2014, 5, 5898.

    Article  CAS  Google Scholar 

  84. Krishnan, S. R.; Ray, T. R.; Ayer, A. B.; Ma, Y. J.; Gutruf, P.; Lee, K. H.; Lee, J. Y.; Wei, C.; Feng, X.; Ng, B. et al. Epidermal electronics for noninvasive, wireless, quantitative assessment of ventricular shunt function in patients with hydrocephalus. Sci. Trans. Med. 2018, 10, eaat8437.

    Article  CAS  Google Scholar 

  85. Kim, J. H.; Kim, S. R.; Kil, H. J.; Kim, Y. C.; Park, J. W. Highly conformable, transparent electrodes for epidermal electronics. Nano Lett. 2018, 15, 4531–4540.

    Article  CAS  Google Scholar 

  86. Jang, T. M.; Lee, J. H.; Zhou, H. L.; Joo, J.; Lim, B. H.; Cheng, H. Y.; Kim, S. H.; Kang, I. S.; Lee, K. S.; Park, E. et al. Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. 2020, 6, eabc9675.

    CAS  Google Scholar 

  87. Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

    Article  CAS  Google Scholar 

  88. Hannah, S.; Brige, P.; Ravichandran, A.; Ramuz, M. Conformable, stretchable sensor to record bladder wall stretch. ACS Omega 2019, 4, 1907–1915.

    Article  CAS  Google Scholar 

  89. Baik, S.; Lee, H. J.; Kim, D. W.; Kim, J. W.; Lee, Y.; Pang, C. Bioinspired adhesive architectures: From skin patch to integrated bioelectronics. Adv. Mater. 2019, 31, 1803309.

    Article  CAS  Google Scholar 

  90. Wang, Y.; Yu, Y. R.; Guo, J. H.; Zhang, Z. H.; Zhang, X. X.; Zhao, Y. J. Bio-inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics. Adv. Funct. Mater. 2020, 30, 2000151.

    Article  CAS  Google Scholar 

  91. Yao, G.; Yin, C. H.; Wang, Q.; Zhang, T. Y.; Chen, S. H.; Lu, C.; Zhao, K. N.; Xu, W. N.; Pan, T. S.; Gao, M. et al. Flexible bioelectronics for physiological signals sensing and disease treatment. J. Mater. 2020, 6, 397–413.

    Google Scholar 

  92. Chen, Y.; Zhang, Y. C.; Liang, Z. W.; Cao, Y.; Han, Z. Y.; Feng, X. Flexible inorganic bioelectronics. npj Flex. Electron. 2020, 4, 2.

    Article  Google Scholar 

  93. Kang, D. Y.; Kim, Y. S.; Ornelas, G.; Sinha, M.; Naidu, K.; Coleman, T. P. Scalable microfabrication procedures for adhesive-integrated flexible and stretchable electronic sensors. Sensors 2015, 15, 23459–23476.

    Article  CAS  Google Scholar 

  94. Han, L.; Lu, X.; Wang, M. H.; Gan, D. L.; Deng, W. L.; Wang, K. F.; Fang, L. M.; Liu, K. Z.; Chan, C. W.; Tang, Y. H. et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 2017, 13, 1601916.

    Article  CAS  Google Scholar 

  95. Brubaker, C. E.; Messersmith, P. B. Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 2011, 12, 4326–4334.

    Article  CAS  Google Scholar 

  96. Yang, Z. L.; Zhao, X.; Hao, R.; Tu, Q. F.; Tian, X. H.; Xiao, Y.; Xiong, K. Q.; Wang, M.; Feng, Y. H.; Huang, N. et al. Bioclickable and mussel adhesive peptide mimics for engineering vascular stent surfaces. Proc. Natl. Acad. Sci. 2020, 117, 16127–16137.

    Article  CAS  Google Scholar 

  97. Baik, S.; Kim, J.; Lee, H. J.; Lee, T. H.; Pang, C. Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3D microtips for underwater surface and hairy skin. Adv. Sci. 2018, 5, 1800100.

    Article  CAS  Google Scholar 

  98. Lee, H.; Um, D. S.; Lee, Y.; Lim, S.; Kim, H.; Ko, H. Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv. Mater. 2016, 28, 7457–7465.

    Article  CAS  Google Scholar 

  99. Baik, S.; Kim, D. W.; Park, Y.; Lee, T. J.; Ho Bhang, S.; Pang, C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 2017, 546, 396–400.

    Article  CAS  Google Scholar 

  100. Jin, K. J.; Cremaldi, J. C.; Erickson, J. S.; Tian, Y.; Israelachvili, J. N.; Pesika, N. S. Biomimetic bidirectional switchable adhesive inspired by the gecko. Adv. Funct. Mater. 2014, 24, 574–579.

    Article  CAS  Google Scholar 

  101. Chen, P. J.; Saati, S.; Varma, R.; Humayun, M. S.; Tai, Y. C. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. J. Microelectromechan. Syst. 2010, 19, 721–734.

    Article  Google Scholar 

  102. Lee, J. O.; Park, H.; Du, J.; Balakrishna, A.; Chen, O.; Sretavan, D.; Choo, H. A microscale optical implant for continuous in vivo monitoring of intraocular pressure. Microsyst. Nanoeng. 2017, 3, 17057.

    Article  CAS  Google Scholar 

  103. Lee, J. O.; Narasimhan, V.; Du, J.; Ndjamen, B.; Sretavan, D.; Choo, H. Biocompatible multifunctional black-silicon for implantable intraocular sensor. Adv. Healthc. Mater. 2017, 6, 1601356.

    Article  CAS  Google Scholar 

  104. Narasimhan, V.; Siddique, R. H.; Lee, J. O.; Kumar, S.; Ndjamen, B.; Du, J.; Hong, N.; Sretavan, D.; Choo, H. Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices. Nat. Nanotechnol. 2018, 13, 512–519.

    Article  CAS  Google Scholar 

  105. Kim, T.; Cho, M.; Yu, K. J. Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene. Materials 2018, 11, 1163.

    Article  CAS  Google Scholar 

  106. Sang, M. Y.; Shin, J.; Kim, K.; Yu, K. J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 2019, 9, 374.

    Article  CAS  Google Scholar 

  107. Harris, P. J. F. Carbon nanotube composites. Int. Mater. Rev. 2004, 49, 31–43.

    Article  CAS  Google Scholar 

  108. Avouris, P.; Appenzeller, J.; Martel, R.; Wind, S. J. Carbon nanotube electronics. Proc. IEEE 2003, 91, 1772–1784.

    Article  CAS  Google Scholar 

  109. Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137–3140.

    Article  CAS  Google Scholar 

  110. Compton, O. C.; Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711–723.

    Article  CAS  Google Scholar 

  111. Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190–194.

    Article  CAS  Google Scholar 

  112. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  113. Dinh, T.; Phan, H. P.; Nguyen, T. K.; Qamar, A.; Woodfield, P.; Zhu, Y.; Nguyen, N. T.; Viet Dao, D. Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. J. Phys. D: Appl. Phys. 2017, 50, 215401.

    Article  CAS  Google Scholar 

  114. Liao, X. Q.; Liao, Q. L.; Yan, X. Q.; Liang, Q. J.; Si, H. N.; Li, M. H.; Wu, H. L.; Cao, S. Y.; Zhang, Y. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 2015, 25, 2395–2401.

    Article  CAS  Google Scholar 

  115. Chen, Z. F.; Wang, Z.; Li, X. M.; Lin, Y. X.; Luo, N. Q.; Long, M. Z.; Zhao, N.; Xu, J. B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017, 11, 4507–4513.

    Article  CAS  Google Scholar 

  116. Liu, W. J.; Liu, N. S.; Yue, Y.; Rao, J. Y.; Cheng, F.; Su, J.; Liu, Z. T.; Gao, Y. H. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 2018, 14, 1704149.

    Article  CAS  Google Scholar 

  117. Yang, J.; Luo, S.; Zhou, X.; Li, J. L.; Fu, J. T.; Yang, W. D.; Wei, D. P. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 2019, 11, 14997–15006.

    Article  CAS  Google Scholar 

  118. Zhao, X.; Chen, B.; Wei, G. D.; Wu, J. M.; Han, W.; Yang, Y. Polyimide/Graphene nanocomposite foam-based wind-driven triboelectric nanogenerator for self-powered pressure sensor. Adv. Mater. Technol. 2019, 4, 1800723.

    Article  CAS  Google Scholar 

  119. Park, S. J.; Kim, J.; Chu, M.; Khine, M. J. A. M. T. Flexible piezoresistive pressure sensor using wrinkled carbon nanotube thin films for human physiological signals. Adv. Mater. Technol. 2018, 3, 1700158.

    Article  CAS  Google Scholar 

  120. Boutry, C. M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. A. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914.

    Article  Google Scholar 

  121. Nela, L.; Tang, J. S.; Cao, Q.; Tulevski, G.; Han, S. J. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 2018, 18, 2054–2059.

    Article  CAS  Google Scholar 

  122. Jung, S.; Kim, J. H.; Kim, J.; Choi, S.; Lee, J.; Park, I.; Hyeon, T.; Kim, D. H. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater. 2014, 26, 4825–4830.

    Article  CAS  Google Scholar 

  123. Chen, X. Y.; Liu, H.; Zheng, Y. J.; Zhai, Y.; Liu, X. H.; Liu, C. T.; Mi, L. W.; Guo, Z. H.; Shen, C. Y. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 42594–42606.

    Article  CAS  Google Scholar 

  124. Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700.

    Article  CAS  Google Scholar 

  125. Xiao, Z. J.; Zhou, W. Y.; Zhang, N.; Zhang, Q.; Xia, X. G.; Gu, X. G.; Wang, Y. C.; Xie, S. S. All-carbon pressure sensors with high performance and excellent chemical resistance. Small 2019, 15, 1804779.

    Article  CAS  Google Scholar 

  126. Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

    Article  CAS  Google Scholar 

  127. Zhu, Y. S.; Cai, H. B.; Ding, H. Y.; Pan, N.; Wang, X. P. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS Appl. Mater. Interfaces 2019, 11, 6195–6200.

    Article  CAS  Google Scholar 

  128. Zhao, T. T.; Li, T. K.; Chen, L. L.; Yuan, L.; Li, X. F.; Zhang, J. H. Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials. ACS Appl. Mater. Interfaces 2019, 11, 29466–29473.

    Article  CAS  Google Scholar 

  129. Mickle, A. D.; Won, S. M.; Noh, K. N.; Yoon, J.; Meacham, K. W.; Xue, Y. G.; McIlvried, L. A.; Copits, B. A.; Samineni, V. K.; Crawford, K. E. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 2019, 565, 361–365.

    Article  CAS  Google Scholar 

  130. Yan, D. X.; Bruns, T. M.; Wu, Y. T.; Zimmerman, L. L.; Stephan, C.; Cameron, A. P.; Yoon, E.; Seymour, J. P. Ultracompliant carbon nanotube direct bladder device. Adv. Healthc. Mater. 2019, 8, 1900477.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work acknowledges the support received from the National Research Foundation of Korea (Nos. NRF-2018M3A7B4071109 and NRF-2019R1A2C2086085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Jun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, K., Park, J., Kim, K. et al. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 14, 3096–3111 (2021). https://doi.org/10.1007/s12274-021-3490-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3490-0

Keywords

Navigation