Skip to main content
Log in

Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The biggest challenge of exploring the catalytic properties of under-coordinated nanoclusters is the issue of stability. We demonstrate herein that chemical dopants on sulfur-doped graphene (S-G) can be utilized to stabilize ultrafine (sub-2 nm) Au25(PET)18 clusters to enable stable nitrogen reduction reaction (NRR) without significant structural degradation. The Au25@S-G exhibits an ammonia yield rate of \(27.5\,{\rm{\mu }}{{\rm{g}}_{{\rm{N}}{{\rm{H}}_3}}} \cdot {\rm{m}}{{\rm{g}}_{{\rm{Au}}}}^{ - 1} \cdot {{\rm{h}}^{ - 1}}\) at −0.5 V with faradic efficiency of 2.3%. More importantly, the anchored clusters preserve ∼ 80% NRR activity after four days of continuous operation, a significant improvement over the 15% remaining ammonia production rate for clusters loaded on undoped graphene tested under the same conditions. Isotope labeling experiments confirmed the ammonia was a direct reaction product of N2 feeding gas instead of other chemical contaminations. Ex-situ X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy of post-reaction catalysts reveal that the sulfur dopant plays a critical role in stabilizing the chemical state and coordination environment of Au atoms in clusters. Further ReaxFF molecular dynamics (RMD) simulation confirmed the strong interaction between Au nanoclusters (NCs) and S-G. This substrate-anchoring process could serve as an effective strategy to study ultrafine nanoclusters’ electrocatalytic behavior while minimizing the destruction of the under-coordinated surface motif under harsh electrochemical reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    Article  CAS  Google Scholar 

  2. Liu, L. C.; Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 2021, 6, 244–263.

    Article  CAS  Google Scholar 

  3. Taylor, K. J.; Pettiette-Hall, C. L.; Cheshnovsky, O.; Smalley, R. E. Ultraviolet photoelectron spectra of coinage metal clusters. J. Chem. Phys. 1992, 96, 3319–3329.

    Article  CAS  Google Scholar 

  4. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  CAS  Google Scholar 

  5. Buceta, D.; Piñeiro, Y.; Vázquez-Vázquez, C.; Rivas, J.; López-Quintela, M. A. Metallic clusters: Theoretical background, properties and synthesis in microemulsions. Catalysts 2014, 4, 356–374.

    Article  CAS  Google Scholar 

  6. Zhu, Y.; Qian, H. F.; Drake, B. A.; Jin, R. C. Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α,β-unsaturated ketones and aldehydes. Angew. Chem., Int. Ed. 2010, 122, 1317–1320.

    Article  Google Scholar 

  7. Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotech. 2018, 13, 900–905.

    Article  CAS  Google Scholar 

  8. Austin, N.; Zhao, S.; McKone, J; Jin, R.; Mpourmpakis, G. Elucidating the active sites for CO2 electroreduction on ligand-protected Au25 nanoclusters. Catal. Sci. Technol. 2018, 8, 3795–3805.

    Article  CAS  Google Scholar 

  9. Kauffman, D. R.; Thakkar, J.; Siva, R.; Matranga, C.; Ohodnicki, P. R.; Zeng, C. J.; Jin, R. C. Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl. Mater. Interfaces 2015, 7, 15626–15632.

    Article  CAS  Google Scholar 

  10. Kim, H. Y.; Lee, H. M.; Henkelman, G. Co oxidation mechanism on CeO2-supported Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 1560–1570.

    Article  CAS  Google Scholar 

  11. Zhang, B.; Chen, C. B.; Chuang, W.; Chen, S. P.; Yang, P. D. Size transformation of the Au22(SG)18 nanocluster and its surface-sensitive kinetics. J. Am. Chem. Soc. 2020, 142, 11514–11520.

    Article  CAS  Google Scholar 

  12. Vilhelmsen, L. B.; Walton, K. S.; Sholl, D. S. Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. J. Am. Chem. Soc. 2012, 134, 12807–12816.

    Article  CAS  Google Scholar 

  13. Dou, L.; Wu, S. N.; Chen, D. L.; He, S. H.; Wang, F. F.; Zhu, W. D. Structures and electronic properties of Au clusters encapsulated ZIF-8 and ZIF-90. J. Phys. Chem. C 2018, 122, 8901–8909.

    Article  CAS  Google Scholar 

  14. Li, J. P.; Wang, W. Y.; Chen, W. X.; Gong, Q. M.; Luo, J.; Lin, R. Q.; Xin, H. L.; Zhang, H.; Wang, D. S.; Peng, Q. et al. Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”. Nano Res. 2018, 11, 4774–4785.

    Article  CAS  Google Scholar 

  15. Liu, L. C.; Díaz, U.; Arenal, R.; Agostini, G.; Concepción, P.; Corma, A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 2017, 16, 132–138.

    Article  CAS  Google Scholar 

  16. Häkkinen, H. The gold-sulfur interface at the nanoscale. Nat. Chem. 2012, 4, 443–455.

    Article  CAS  Google Scholar 

  17. Bürgi, T. Properties of the gold-sulphur interface: From self-assembled monolayers to clusters. Nanoscale 2015, 7, 15553–15567.

    Article  CAS  Google Scholar 

  18. Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 10237–10243.

    Article  CAS  Google Scholar 

  19. Qiu, Y.; Peng, X. Y.; Lü, F.; Mi, Y. Y.; Zhuo, L. C.; Ren, J. Q.; Liu, X. J.; Luo, J. Single-atom catalysts for the electrocatalytic reduction of nitrogen to ammonia under ambient conditions. Chem.—Asian J. 2019, 14, 2770–2779.

    Article  CAS  Google Scholar 

  20. Wang, H. J.; Yu, H. J.; Wang, Z. Q.; Li, Y. H.; Xu, Y.; Li, X. N.; Xue, H. R.; Wang, L. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia. Nano Micro Small 2019, 15, 1804769.

    Google Scholar 

  21. Liu, D.; Zhang, G.; Ji, Q. H.; Zhang, Y. Y.; Li, J. H. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate. ACS Appl. Mater. Interfaces 2019, 11, 25758–25765.

    Article  CAS  Google Scholar 

  22. Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.

    Article  CAS  Google Scholar 

  23. Zhang, P. X-ray spectroscopy of gold-thiolate nanoclusters. J. Phys. Chem. C 2014, 118, 25291–25299.

    Article  CAS  Google Scholar 

  24. Mathew, A.; Varghese, E.; Choudhury, S.; Pal, S. K.; Pradeep, T. Efficient red luminescence from organic-soluble Au25 clusters by ligand structure modification. Nanoscale 2015, 7, 14305–14315.

    Article  CAS  Google Scholar 

  25. MacDonald, M. A.; Chevrier, D. M.; Zhang, P.; Qian, H.; Jin, R. The structure and bonding of Au25(SR)18 nanoclusters from EXAFS: The interplay of metallic and molecular behavior. J. Phys. Chem. C 2011, 115, 15282–15287.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, & Biosciences Division, of the US Department of Energy under Contract DEAC02-05CH11231, FWP CH030201 (Catalysis Research Program). The Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract DE-AC02-05CH11231. This work made use of the facilities at the NMR Facility, College of Chemistry, University of California, Berkeley. Inductively coupled plasma optical emission spectrometry was supported by the Microanalytical Facility, College of Chemistry, University of California, Berkeley. Part of this material (WAG, TC) was based on work performed by the Liquid Sunlight Alliance, which was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub under Award Number DE-SC0021266.

This work is dedicated to the occasion of 80th birthday for Prof. Yitai Qian. As the undergraduate advisor for one of the authors (P. D. Y.), Prof. Qian has had profound impact on this author’s career in the field of materials chemistry. P. D. Y. would like to acknowledge the unconditional support, encouragement and guidance from Prof. Qian back in the early 1990s. It was during that time P. D. Y. started his journey in solid state chemistry, by working on high temperature cuprate superconductors and finishing his undergraduate thesis on this exciting topic. The title page of this thesis was attached here (dated June 10, 1993).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, B., Cheng, T. et al. Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Res. 14, 3509–3513 (2021). https://doi.org/10.1007/s12274-021-3561-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3561-2

Keywords

Navigation