Skip to main content
Log in

Large scale preparation of 20 cm × 20 cm graphene modified carbon felt for high performance vanadium redox flow battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Vanadium redox flow batteries (VRFBs) are widely applied in energy storage systems (e.g., wind energy, solar energy), while the poor activity of commonly used carbon-based electrode limits their large-scale application. In this study, the graphene modified carbon felt (G/CF) with a large area of 20 cm × 20 cm has been successfully prepared by a chemical vapor deposition (CVD) strategy, achieving outstanding electrocatalytic redox reversibility of the VRFBs. The decorating graphene can provide abundant active sites for the vanadium redox reactions. Compared with the pristine carbon felt (CF) electrode, the G/CF composite electrode possesses more defective sites on surface, which enhances activity toward VO2+/VO +2 couple and electrochemical performances. For instance, such G/CF electrode delivered remarkable voltage efficiency (VE) of 88.4% and energy efficiency (EE) of 86.4% at 100 mA·cm−2, much higher than CF electrode by 2.1% and 3.78%, respectively. The long-term cycling stability of G/CF electrode was further investigated and a high retention value of 47.6% can be achieved over 600 cycles. It is demonstrated that this work develops a promising and effective strategy to synthesize the large size of carbon electrode with high performances for the next-generation VRFBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walsh, F. C. Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl. Chem. 2001, 73, 1819–1837.

    Article  CAS  Google Scholar 

  2. Alotto, P.; Guarnieri, M.; Moro, F.; Stella, A. Large scale energy storage with redox flow batteries. Compel 2013, 32, 1459–1470.

    Article  Google Scholar 

  3. Dong, Q. F.; Zhang, H. M.; Jin, M. G.; Zheng, M. S.; Zhan, Y. D.; Sun, S. G.; Lin, Z. G. Research progresses in a flow redox battery. Electrochemistry 2005, 11, 237–243.

    CAS  Google Scholar 

  4. Holland-Cunz, M. V.; Cording, F.; Friedl, J.; Stimming, U. Redox flow batteries—Concepts and chemistries for cost-effective energy storage. Front. Energy 2018, 12, 198–224.

    Article  Google Scholar 

  5. Leung, P.; Li, X. H.; De León, C. P.; Berlouis, L.; Low, C. T. J.; Walsh, F. C. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012, 2, 10125–10156.

    Article  CAS  Google Scholar 

  6. Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

    Article  CAS  Google Scholar 

  7. Sun, B. T.; Skyllas-Kazacos, M. Chemical modification of graphite electrode materials for vanadium redox flow battery application—Part II. Acid treatments. Electrochim. Acta 1992, 37, 2459–2465.

    Article  CAS  Google Scholar 

  8. Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.; Mjalli, F. S.; Saleem, M. Progress in flow battery research and development. J. Electrochem. Soc. 2011, 158, R55.

    Article  CAS  Google Scholar 

  9. Wang, R.; Li, Y. S.; He, Y. L. Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: Meeting improved electrochemical activity and enhanced mass transport from nano-to micro-scale. J. Mater. Chem. A 2019, 7, 10962–10970.

    Article  CAS  Google Scholar 

  10. Jia, C. K.; Pan, F.; Zhu, Y. G.; Huang, Q. Z.; Lu, L.; Wang, Q. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Sci. Adv. 2015, 1, e1500886.

    Article  Google Scholar 

  11. Xia, L.; Long, T.; Li, W. Y.; Zhong, F. F.; Ding, M.; Long, Y.; Xu, Z. Z.; Lei, Y. Q.; Guan, Y.; Yuan, D. et al. Highly stable vanadium redox-flow battery assisted by redox-mediated catalysis. Small 2020, 16, 2003321.

    Article  CAS  Google Scholar 

  12. Wang, R.; Li, Y. S. Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective. Energy Storage Mater. 2020, 31, 230–251.

    Article  Google Scholar 

  13. Kim, K. J.; Park, M. S.; Kim, Y. J.; Kim, J. H.; Dou, S. X.; Skyllas-Kazacos, M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 16913–16933.

    Article  CAS  Google Scholar 

  14. Gencten, M.; Sahin, Y. A critical review on progress of the electrode materials of vanadium redox flow battery. Int. J. Energ. Res. 2020, 44, 7903–7923.

    Article  CAS  Google Scholar 

  15. Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

    Article  CAS  Google Scholar 

  16. Jiang, H. R.; Shyy, W.; Wu, M. C.; Zhang, R. H.; Zhao, T. S. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries. Appl. Energy 2019, 233–234, 105–113.

    Google Scholar 

  17. Kumar, S.; Jayanti, S. Effect of flow field on the performance of an all-vanadium redox flow battery. J. Power Sources 2016, 307, 782–787.

    Article  CAS  Google Scholar 

  18. Zhang, K. Y.; Yan, C. W.; Tang, A. Oxygen-induced electrode activation and modulation essence towards enhanced anode redox chemistry for vanadium flow batteries. Energy Storage Mater. 2021, 34, 301–310.

    Article  Google Scholar 

  19. Li, B.; Gu, M.; Nie, Z. M.; Shao, Y. Y.; Luo, Q. T.; Wei, X. L.; Li, X. L.; Xiao, J.; Wang, C. M.; Sprenkle V. et al. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano Lett. 2013, 13, 1330–1335.

    Article  CAS  Google Scholar 

  20. Jeong, S.; Kim, S.; Kwon, Y. Performance enhancement in vanadium redox flow battery using platinum-based electrocatalyst synthesized by polyol process. Electrochim. Acta 2013, 114, 439–447.

    Article  CAS  Google Scholar 

  21. Tsai, H. M.; Yang, S. J.; Ma, C. C. M.; Xie, X. F. Preparation and electrochemical activities of iridium-decorated graphene as the electrode for all-vanadium redox flow batteries. Electrochim. Acta 2012, 77, 232–236.

    Article  CAS  Google Scholar 

  22. Wei, L.; Zhao, T. S.; Zeng, L.; Zhou, X. L.; Zeng, Y. K. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Appl. Energy 2016, 180, 386–391.

    Article  CAS  Google Scholar 

  23. Yu, L. H.; Lin, F.; Xu, L.; Xi, J. Y. P-doped electrode for vanadium flow battery with high-rate capability and all-climate adaptability. J. Energy Chem. 2019, 35, 55–59.

    Article  Google Scholar 

  24. Wu, X. X.; Xu, H. F.; Lu, L.; Zhao, H.; Fu, J.; Shen, Y.; Xu, P. C.; Dong, Y. M. PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery. J. Power Sources 2014, 250, 274–278.

    Article  CAS  Google Scholar 

  25. Yun, N. R.; Park, J. J.; Park, O. O.; Lee, K. B.; Yang, J. H. Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries. Electrochim. Acta 2018, 278, 226–235.

    Article  CAS  Google Scholar 

  26. Wei, L.; Zhao, T. S.; Zhao, G.; An, L.; Zeng, L. A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries. Appl. Energy 2016, 176, 74–79.

    Article  CAS  Google Scholar 

  27. Li, B.; Gu, M.; Nie, Z. M.; Wei, X. L.; Wang, C. M.; Sprenkle, V.; Wang, W. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano Lett. 2014, 14, 158–165.

    Article  CAS  Google Scholar 

  28. Jing, M. H.; Zhang, X. S.; Fan, X. Z.; Zhao, L. N.; Liu, J. G.; Yan, C. W. CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery. Electrochim. Acta 2016, 215, 57–65.

    Article  CAS  Google Scholar 

  29. Han, P. X.; Yue, Y. H.; Liu, Z. H.; Xu, W.; Zhang, L. X.; Xu, H. X.; Dong, S. M.; Cui, G. L. Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO +2 /VO2+ redox couples for vanadium redox flow batteries. Energy Environ. Sci. 2011, 4, 4710–4717.

    Article  CAS  Google Scholar 

  30. Blasi, A. D.; Busaccaa, C.; Di Blasia, O.; Briguglioa, N.; Squadritoa, G.; Antonuccia, V. Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application. Appl. Energy 2017, 190, 165–171.

    Article  CAS  Google Scholar 

  31. Xia, L.; Zhang, Q. F.; Wu, C.; Liu, Y. R.; Ding, M.; Ye, J. Y.; Cheng, Y. H.; Jia, C. K. Graphene coated carbon felt as a high-performance electrode for all vanadium redox flow batteries. Surf. Coat. Tech. 2019, 358, 153–158.

    Article  CAS  Google Scholar 

  32. Hu, G. J.; Jing, M. H.; Wang, D. W.; Sun, Z. H.; Xu, C.; Ren, W. C.; Cheng, H. M.; Yan, C. W.; Fan, X. Z.; Li, F. A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries. Energy Storage Mater. 2018, 13, 66–71.

    Article  Google Scholar 

  33. Deng, Q.; Huang, P.; Zhou, W. X.; Ma, Q.; Zhou, N.; Xie, H.; Ling, W.; Zhou, C. J.; Yin, Y. X.; Wu, X. W. et al. A high-performance composite electrode for vanadium redox flow batteries. Adv. Energy Mater. 2017, 7, 1700461.

    Article  CAS  Google Scholar 

  34. Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries. J. Power Sources 2017, 341, 318–326.

    Article  CAS  Google Scholar 

  35. He, Z. X.; Li, M. M.; Li, Y. H.; Li, C. C.; Yi, Z.; Zhu, J.; Dai, L.; Meng, W.; Zhou, H. Z.; Wang, L. ZrO2 nanoparticle embedded carbon nanofibers by electrospinning technique as advanced negative electrode materials for vanadium redox flow battery. Electrochim. Acta 2019, 309, 166–176.

    Article  CAS  Google Scholar 

  36. Abbas, S.; Mehboob, S.; Shin, H. J.; Han, O. H.; Ha, H. Y. Highly functionalized nanoporous thin carbon paper electrodes for high energy density of zero-gap vanadium redox flow battery. Chem. Eng. J. 2019, 378, 122190.

    Article  CAS  Google Scholar 

  37. Ling, W.; Wang, Z. A.; Ma, Q.; Deng, Q.; Tang, J. F.; Deng, L.; Zhu, L. H.; Wu, X. W.; Yue, J. P.; Guo, Y. G. Phosphorus and oxygen co-doped composite electrode with hierarchical electronic and ionic mixed conducting networks for vanadium redox flow batteries. Chem. Commun. 2019, 55, 11515–11518.

    Article  CAS  Google Scholar 

  38. Long, Y.; Ding, M.; Jia, C. K. Application of nanomaterials in aqueous redox flow batteries. ChemNanoMat, in press, DOI: https://doi.org/10.1002/cnma.202100124.

  39. Li, W. Y.; Zhang, Z. Y.; Tang, Y. B.; Bian, H. D.; Ng, T. W.; Zhang, W. J.; Lee, C. S. Graphene-nanowall-decorated carbon felt with excellent electrochemical activity toward VO2+/VO2+ couple for all vanadium redox flow battery. Adv. Sci. 2016, 3, 1500276.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the 100 Talented Team of Hunan Province (XiangZu [2016] 91), the “Huxiang high-level talents” program (Nos. 2018RS3077, 2019RS1007, and 2019RS1046), the National Natural Science Foundation of China (No. 52002405), and the Open Fund of National Engineering Laboratory of Highway Maintenance Technology (Changsha University of Science & Technology) (No. kfj170105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Ding, Gen Chen or Chuankun Jia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, T., Long, Y., Ding, M. et al. Large scale preparation of 20 cm × 20 cm graphene modified carbon felt for high performance vanadium redox flow battery. Nano Res. 14, 3538–3544 (2021). https://doi.org/10.1007/s12274-021-3564-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3564-z

Keywords

Navigation